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Preface

This book is intended for geophysicists interested in the theoretical analysis and
numerical modelling of processes occurring in sea ice and grounded polar ice sheets
on geophysical scales, as well as for civil engineers involved in the design of
engineering structures subjected to the action of floating ice. The main purpose
of the book is to provide readers with knowledge of the concepts and tools of ice
mechanics and to present examples of its application in glaciology, climate research
and civil engineering in cold regions; some of the results are also of relevance to
materials science. Accordingly, the book gives an account of the most important
physical properties of sea and polar ice treated as a polycrystalline material and
reviews relevant results of field observations and experimental measurements. The
major part of the book presents theoretical descriptions of the material behaviour of
ice observed in different stress, deformation and deformation-rate regimes, on
spatial scales ranging from that of a single ice crystal, through those of typical civil
engineering applications, up to those of thousands of kilometres, characteristic of
large polar ice sheets in Antarctica and Greenland. In addition, the book offers a
range of numerical formulations based on either discrete (finite-element,
finite-difference and smoothed particle hydrodynamics) methods or asymptotic
expansion methods, which can be used by geophysicists, theoretical glaciologists
and civil engineers for solving problems of their interest. The numerical formula-
tions presented here have been employed to simulate the behaviour of ice in a
number of problems of importance to glaciology and engineering, and the results
of these simulations are discussed throughout the book.

The readers are assumed to possess a standard knowledge of theoretical and
structural mechanics and to be familiar with the formalism of continuum
mechanics. Some knowledge of materials science could also be useful, though it is
believed that the concepts introduced and then gradually developed in the course
of the text are presented in a way that is adequate for understanding the content of
this book.

Gdańsk, Poland Ryszard Staroszczyk
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Chapter 1
Introduction

Sea ice, subject to seasonal variations, covers an area of approximately 20–25million
km2 of Arctic and Antarctic waters, which is about the size of the whole continent of
North America and accounts for around 6–7% of the total area of the World Ocean.
Polar ice caps in Greenland and Antarctica, on the other hand, occupy together an
area of nearly 16 million km2, which is about 11% of the total land area on Earth
and accounts for around 90% of fresh water on our planet.

People became acquainted with sea ice a long time ago, with the first, though
not very reliable, reports of its sightings coming from ancient Greeks. For centuries,
sailors, fishermen and whalers were exposed to risks associated with navigation in
polar and subpolar regions, and engineers had to learn how to construct bridges
across ice-covered waters and how to protect harbours from sea ice. Finding the
shipping routes connecting the Atlantic and Pacific Oceans through the Arctic Ocean
(the Northeast and Northwest Passages) was a great challenge in the 18th and 19th
centuries. Then, in the second half of the 20th century, the exploitation of the oil
and natural gas fields off the coasts of Alaska began. Sea ice in the Arctic was
also of special interest to the navies of the nuclear powers during the cold war. In
the meantime, with intensifying economic activities in polar regions, engineers had
to deal with such problems as the construction of ice roads, aircraft runways and
material storage places on ice covers.

The first serious attempts to describe the large-scale motion and deformation
of sea ice started in the 1930s, though in these early efforts a sea ice pack was
treated as a collection of rigid bodies freely drifting on the ocean surface, and no
interactions between ice floes were considered. This situation changed only in the
1950s and 1960s, when extensive exploration of natural resources in polar regions
started, and an interest in the studying of the weather and climate systems of the
planet emerged. Numerous experiments and field observations were then carried out,
and many scientists working in related disciplines, such as continuum mechanics,
fracturemechanics andmaterials science, became attracted to this new research field.
As a result, rigorously formulated theories describing the behaviour of sea ice were
developed, and one can assume that around the year 1960 a new discipline of ice
mechanics was born.
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Regarding the land-based polar icemasses inGreenland andAntarctica, an interest
in their, first, economic and then scientific explorationdeveloped, for obvious reasons,
much later than in the case of sea ice. The ice cap in Greenland was first seen by
Vikings around the year 1000, and the ice cap in Antarctica was discovered as late
as in 1819. For a long time afterwards little was known and understood about the
large-scale mechanical behaviour of polar glacier ice. Only after the Second World
War the first theories attempting to describe the features and behaviour of ice were
developed, mostly by British scientists, with the famous Glen’s flow law, describing
the creep of ice, being formulated in 1955. However, for nearly the thirty following
years, progress in this research area was modest. Only in the late 1970s and early
1980s did the research on polar ice gain a significant impetus, largely due to interest
shown by climatologists. First theoretical models based on the rigourous methods
of continuum mechanics were developed to describe the constitutive behaviour of
polar ice on long geophysical scales. Even though the science of glaciology had
already been well established by then, it was probably around the year 1980 that
the discipline of theoretical glaciology, in the sense it is understood today, took its
present form. The efforts to formulate theoretical descriptions of ice motion and
deformation, with the material treated first as isotropic and then anisotropic, were
continued for another twenty or so years, before interest in this research started to
wane around 2005. It seems that at present the main thrust in the field of polar ice
mechanics is directed towards the development of large-scale computational models
for polar ice caps, rather than towards the description of the fundamental properties
of ice, which is the material that belongs to the group of the most anisotropic natural
materials on our planet.

This book is an attempt to present, in a single volume, the theoretical tools of
ice mechanics and glaciology that can be useful in the analysis of the mechanical
behaviour of ice in a wide array of spatial and time scales, ranging from the scales
typical of civil engineering applications, up to those which are characteristic of
geophysical and climate phenomena occurring in large parts of the planet, such as
continental ice sheets and the surrounding ocean waters. Hence, the scope of the
book covers the concepts, methods and theoretical results that might be of interest
to civil engineers, glaciologists and geophysicists.

The book is organized as follows. Chapter 2 describes the processes of formation
of natural ice masses on Earth and characteristics of the most common types of ice
encountered on our planet. First, various mechanisms involved in the formation of
sea ice from water are discussed, with a focus on the influence of environmental
conditions prevailing during the development of ice on its structure and mechanical
properties. Next, entirely different mechanisms that are involved in the transforma-
tion of snow into glacier ice in Antarctica and Greenland are described, together with
an outline of the processes which continuously change ice properties as ice particles
descend through a polar ice sheet from its surface to depth over very long geophys-
ical time scales. Some aspects of the macroscopic anisotropy of ice developing in
polar glaciers are signalled in this chapter; albeit very briefly, since the topics of the
formation and evolution of the anisotropic properties of polar ice are discussed in
great detail in Chaps. 6–8. For completeness, the chapter is concluded with a short
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presentation of the most important features of polar ice shelves and icebergs; these
types of natural ice, however, will not be considered in this book.

In Chap. 3, the properties of ice and its mechanical behaviour are discussed. First,
the basic facts concerning various forms of ice are presented, and relevant physical
parameters are given. Then, the crystalline microstructure of ice is described, with
an emphasis on the anisotropic properties of a single ice crystal and their effect on
various types of its microscopic deformation. This is followed by the presentation of
the macroscopic properties of polycrystalline ice and its behaviour in various stress
and deformation regimes. Thus, the elastic, viscoelastic, creep and brittle behaviour
of the material is discussed, and constitutive equations describing all these types of
the response of ice to stress are given. At this stage polycrystalline ice is treated as
an isotropic body. The constitutive models for the ice treated as a macroscopically
anisotropicmaterial with an evolvingmicrostructure are developed in Chaps. 6 and 7.

Chapters 4 and 5 deal with problems involving sea ice. The first of these chapters
is concerned with the behaviour of ice on civil engineering length scales. Several
problems of the interaction between a coherent sea ice cover and an engineering
structure are analysed. First, the problem of elastic response of ice during its short-
time interaction (measured in seconds) with a rigid vertical structure is analysed,
with the aim to evaluate maximum horizontal forces that can be exerted by ice on
the structure. These forces are assumed to be those which cause an elastic buckling
failure of a floating ice plate under compressive and bending loadings. Next, ice-
structure interaction events lasting for hours and days are investigated, in which the
deformations of ice are dominated by its creep. Thus, the mechanism of creep buck-
ling of a floating ice plate is analysed, the values of time at which the flexural failure
of ice occurs are determined, and the magnitudes of forces acting on the structure
are calculated. Further, the interaction problems involving cylindrical structures are
considered, and the effects of different sea ice rheologies on the predicted values of
forces exerted by ice on structure walls are examined. In the concluding part of this
chapter, a dynamic impact of floating ice on the structure is analysed, during which
the ice behaves in a brittle manner. For an adopted set of parameters defining the
limit failure stresses in ice, the history of loads sustained by the structure during a
typical impact event is determined. Furthermore, probability distributions for max-
imum impact forces as functions of the floe size, its thickness and initial horizontal
velocity are also determined.

In Chap. 5 the behaviour of sea ice on geophysical length scales is considered.
Thus, the motion and deformation of a large ice pack driven by wind drag and ocean
current stresses is investigated. The behaviour of the pack, consisting of amultitude of
ice floes interacting with each other or separated by water, is analysed by treating the
ice cover as a two-dimensional continuum having horizontal dimensions of the order
of tens to hundreds kilometres, with local properties defined by the ice thickness and
the ice area concentration. The equations governing the macroscopic behaviour of
the ice pack are solved in the material coordinates by applying two discrete methods:
a finite-element method and a smoothed particle hydrodynamics method. The results
of numerical simulations, carried out for several constitutive models describing the
large-scale rheology of sea ice, illustrate the evolution of the pack under the action of
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wind, including variation in the ice thickness and ice concentration, with a particular
focus on changes in the position of open sea-ice pack boundaries.

The remaining part of the book is devoted entirely to the analysis of creep phe-
nomena in grounded polar ice treated as an anisotropic polycrystalline aggregate.
Thus, two families of constitutive theories are presented, based on two fundamen-
tally different approaches: micro-mechanical and phenomenological. The constitu-
tive laws derived by applying either approach are subsequently used to simulate
flows of large polar ice sheets. In Chap. 6, micro-mechanical constitutive models
describing the evolving anisotropy of polycrystalline ice are presented. Based on
some assumptions regarding the anisotropic properties of an individual ice crystal
and slip systems active during its deformation, frame-indifferent constitutive laws
for the creep response of the crystal are formulated. By applying homogenization
methods, the microscopic laws are then used to derive the macroscopic constitutive
relations for polycrystalline ice. These relations are employed to simulate the creep
behaviour of ice in simple flows in order to correlate parameters in the macroscopic
flow laws with the observed anisotropic behaviour of polar ice, and also to evaluate
directional viscosities of the material depending on its current deformation. The con-
cluding part of this chapter is concerned with the important mechanism of dynamic
(migration) recrystallization of polycrystalline ice. This mechanism, usually occur-
ring in regions close to the bottom of polar ice sheets, leads to the weakening, and
often to total destruction, of the anisotropic microstructure that develops at earlier
stages of the ice descent through the depth of an ice sheet. This process considerably
modifies the macroscopic viscosities of ice, and thus affects the overall flow of an ice
sheet. Three alternative dynamic recrystallization models are formulated, in which
the weakening of the anisotropic microstructure of ice is modelled by introducing
a scalar strength factor depending continuously on a single, temperature-dependent
invariant (of stress, strain-rate or strain). These three alternative models are used in
the simulations for simple flow configurations to investigate the effect of the recrys-
tallization process on the evolution of macroscopic viscosities of ice.

The following Chap. 7 deals with a phenomenological description of polycrys-
talline ice, in which the macroscopic creep response of ice is determined solely in
terms of the macroscopic stress, strain-rate, and deformation. However, the micro-
scopic mechanism of re-orientation of crystal slip systems during the deformation
of ice is accounted for in order to model the evolution of the internal structure of the
material. General forms of frame-indifferent constitutive flow laws, which express
either the stress in terms of the strain-rate, or the strain-rate in terms of the stress,
are derived on the assumption that the type of anisotropy which develops in polar ice
sheets is close to orthotropy. Again, the parameters in the derived constitutive models
are determined by the correlation of model predictions with available experimental
data. Then, the phenomenological approach is applied to model the mechanism of
the dynamic recrystallization of polar ice. All phenomenological models developed
in this chapter are applied to simulate the evolution of the macroscopic viscous
properties of polycrystalline ice with increasing shear and axial strains.

In the last Chap. 8, the micro-mechanical and phenomenological constitutive
models presented in Chaps. 6 and 7 are used in numerical simulations of plane and
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radially-symmetric ice sheet flows. First, a simpler case of a gravity-driven flow of an
isothermal ice sheet with a prescribed free-surface elevation is analysed. Assuming
a horizontal bedrock and no-slip basal conditions, free-surface ice accumulation
rates required to maintain the prescribed geometry are calculated. By employing
a finite-element method, numerical simulations have been carried out for different
sets of constitutive model parameters to examine their effect on the flow field. In
particular, the influence of ice anisotropy on stress and velocity depth-profiles across
the ice sheet is demonstrated. In addition, the effect of the dynamic recrystallization
mechanism on ice sheet behaviour is also investigated.

In the second part of Chap. 8, a more realistic, and more complex, steady-state,
radially-symmetric flow problem of a polythermal ice sheet is analysed, in which
accumulation (precipitation) rates are prescribed, and an a priori unknown free sur-
face elevation is to be determined as part of the solution. Assuming that ice viscosities
depend on temperature and strain-rate in a non-linear manner, a computational model
is constructed by applying the method of asymptotic expansions in a small param-
eter defining the ratio of an ice sheet’s thickness to its lateral span. The results of
numerical simulations of isotropic and anisotropic ice flow on a flat bedrock are
compared to show the effects of ice anisotropy on both the free surface geometry
and the velocity field in an ice sheet. The results obtained for the flow of ice over an
undulating bedrock are also presented to show the influence of the bed topography
features on the overall flow of an ice sheet. In addition, the effect of varying basal
melt rates and temperature distributions on an ice sheet profile is investigated. The
chapter is complemented with the presentation of results illustrating the effects of
the dynamic recrystallization process on the free-surface profiles and flow velocities
in a polar ice sheet.

This work summarizes the results obtained by the author in the past two decades,
and most of these results have been published in a number of peer-reviewed
journal papers (see the bibliography lists in successive chapters of the book). The
results of research on sea ice, presented in Chaps. 4 and 5, were obtained mainly in
1995–1997, 2001–2006 and 2016–2017, and those relating to polar ice, presented
in Chaps. 6–8, were obtained mostly in the periods of 1997–2005 and 2010–2013.
During those years, the author was supported not only by his home Institute of
Hydro-Engineering of the Polish Academy of Sciences in Gdańsk, Poland, but also
by anumber of researchprojects. Theseprojects includedModellingof sea ice dynam-
ics granted by the British NERC (1995–1996), Fabric development and rheology of
anisotropic ice for ice sheet modelling granted by the European Union (1997–1999),
Evaluation of forces on engineering structures exerted by floating ice granted by the
Polish Committee for Scientific Research (KBN) (2001–2002), Evolving anisotropy
in ice sheet flows granted by the British EPSRC (2001–2003), and Development
of a model for dynamic recrystallization of ice and its application to large polar
ice sheet flows granted by the Polish Ministry of Science and Higher Education
(2010–2011). While working on the projects funded by the British research councils
and the EU, the author was employed by the University of East Anglia in Nor-
wich. The support provided at various stages by the European Science Foundation in
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Strasbourg, France, and the British Antarctic Survey in Cambridge, Great Britain, is
also acknowledged.

My special thanks go to LeslieW.Morland, now Emeritus Professor at the School
of Mathematics of the University of East Anglia in Norwich, who brought me to the
field of ice mechanics in the mid-1990s. Without his friendly guidance and help
during my very productive six years in Norwich and thereafter, this book would have
never been conceived and written.
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Chapter 2
Formation and Types of Natural Ice
Masses

Floating ice (sea, lake and river ice) and glacier ice (polar ice caps in Antarctica and
Greenland and mountain glaciers) are the two most common kinds of natural ice on
the surface of Earth, with sea ice and polar ice sheets and shelves occupying vast areas
of ocean and land in high-latitude regions in both hemispheres of the planet. Despite
obvious similarities, though, these two forms of ice are quite distinct materials in
terms of their origin, internal structure, mechanical properties and typical life-span.
Sea ice, as in general any floating ice, forms by the process of solidification of liquid
water at its freezing temperature. The process starts on the free surface of a water
body and then progresses downwards, creating a floating sheet of ice that is made
up of elongated crystals, with typical diameters of 5–10 mm and lengths of 10 and
more centimetres, provided that the environmental conditions are sufficiently still.
Usually, a sea ice cover needs a period of weeks to months to fully develop. The
resulting ice, if it survives the first summer season, can last for several years before
disintegrating.

Land-based polar ice, on the other hand, develops from snow that falls on the upper
surface of a glacier. Due to various thermodynamic processes, snow transforms first
to firn (a form of high-porosity ice), and then to bubble-free glacier ice. It usually
takes hundreds to thousands of years to form polar ice from snow. The resulting ice is
composed of fairly regular grains a few millimetres across. Once ice has formed, its
particles begin to descend slowly from near-surface layers of the glacier to its depth.
During this descent, which is driven by gravity, ice undergoes several processes that
change considerably its internal structure, leading to the development of a strong
anisotropy of the material (polar ice is one of the most anisotropic natural materials
on Earth). Time scales required for ice particles to descend from the surface of an
Antarctic glacier to its base are of the order of 100,000 years. Thus, these scales are
by four orders of magnitude longer than those characteristic of sea ice.

This chapter provides an account of the major mechanisms involved in the forma-
tion of both sea and polar ice, together with a description of the most characteristic
types of ice and features that can develop in it. Only the aspects which seem the
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most relevant to the subject matter of this book are addressed, so this chapter is by
no means an exhaustive overview of the physical properties of sea and glacier ice.
Readers interested in more detailed treatments can find them elsewhere in the litera-
ture; for instance, in the books on general ice physics by Schulson and Duval (2009)
and Hobbs (2010), on sea ice byWeeks (2010), and on glacier ice by Paterson (1994)
and Greve and Blatter (2009). A very thorough review of the properties of polar ice,
with the focus on its microstructure (addressed in the next Chap. 3 of this book) can
be found in two papers by Faria et al. (2014a, b), both providing extensive lists of
references.

2.1 Sea Ice

Sea ice is formed from freezing salt water, with the freezing temperature decreasing
with increasing salinity of water. The so-called standard ocean water, which has a
salinity of 35 ppt (parts per thousand) by weight, freezes at −1.91 ◦C; for com-
parison, water with a salinity of 30 ppt freezes at −1.63 ◦C. Due to the significant
concentration of salt in water, the process of sea ice formation is quite distinct from
that occurring in the case of fresh (lake or river) water. In fresh water, which has
an anomalous maximum density at +4 ◦C, the process of freezing is relatively sta-
ble, since as the surface layer of water cools down (and becomes lighter than the
underlying denser water), there is no convective mixing of the liquid. Under such
conditions, water freezes easily and forms a stably growing layer of ice with a density
of 917 kgm−3. In contrast, as salt water cools, its density increases and it sinks con-
vectively. The sinking water is replaced by deeper, warmer water, so that a surface
layer 10–20 m thick is usually involved in the water mixing process (lower layers
of ocean, deeper than 20 m, are generally denser due to their higher salt content and
usually do not mix with the upper layers). This means that the entire surface column
of ocean water has to reach a uniform temperature of the freezing point to initiate
the process of ice formation. Generally, it takes weeks to months before a layer of
floating ice forms on the sea surface.

Depending on local weather and environmental conditions, there are two possible
ways for sea ice cover to form (Weeks 2010). The first, less common situation arises
when the conditions are calm, and appreciable winds and ocean waves are absent.
Under such conditions, the process of sea ice formation is initiated by the nucleation
of fine crystals, gradually transforming into small platelets of ice floating on the sea
surface. This initial form of ice is called frazil, and, as the freezing progresses, frazil
develops into a continuous crust of ice on the water surface. When the ice thickness
increases to a few centimetres, it becomes black ice, because of its dark colour. This
term is due to the transparency of the ice cover, through which the underlying ocean
water can be seen. With time, the ice platelets flex and slip relative to each other to
form brittle and shiny ice rind. This type of ice often forms in coastal regions where
the water salinity is low; for instance, because of the proximity of a river mouth. All
the above initial types of sea ice are referred to as new ice. As the ice rind thickens to
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about 10 cm, it becomes young ice, with a subdivision into grey ice (10–15 cm thick)
and grey-white ice (15–30 cm thick). Young ice has a greenish-blue appearance, and
is often moist on the top surface. With further growth of the ice cover, the first-year
ice (FY ice) forms. It is usually assumed that its thickness ranges from 30 to as much
as 200 cm. Sometimes, first-year ice is subdivided into the categories of thin (30–70
cm), medium (70–120 cm), and thick (>120 cm) FY ice.

The second, and more common, process in which sea ice is formed occurs in the
presence of strongwinds, andhence high oceanwaves.Under such conditions, typical
of the open ocean, the frazil platelets which have initially formed on the surface of
freezing water do not merge into a coherent layer of black ice and subsequently ice
rind, but rather they form a soupy layer of loose and disconnected frazil crystals,
termed grease ice. Another type of the initial form of the sea ice, called slush,
develops during heavy snowfalls, when snow crystals are deposited directly on the
sea surface. Yet another, very rare, type of ice, called shuga can develop as a result
od white lumps of ice, a few centimetres in size, rising from the seabed to the water
surface. As the freezing of sea water continues, lumps of grease ice, slush or shuga
gradually coalesce, to form a very characteristic type of sea ice known as pancake
ice. The pancakes are circular pieces of ice about 30 cm to 3 m in diameter, and
about 10 cm thick. Pancake ice is quite a frequent feature during the initial phase of
an ice cover development in the Southern Ocean around Antarctica. Subsequently,
especially when the weather becomes calmer, pancake ice transforms into a coherent
layer of young ice and then first-year ice, whose structure is similar to that of ice
formed in more calmer weather conditions.

The reason for choosing the ice terminology break (young ice vs. first-year ice) at
a thickness of 30 cm is the observation (Sanderson 1988; Weeks 2010) that the prop-
erties of sea ice change significantly just around this limit thickness. It turns out that,
largely because of the violent history of its development on the water surface, young
ice is made up of a conglomerate of randomly oriented crystals, typically forming
grains of a size 1–3 mm. Because of the randomness of the crystal orientations, this
ice is macroscopically isotropic in terms of its mechanical behaviour. Such ice is
referred to as granular ice, also known as random polycrystalline or T1 ice.

Once a solid layer of young ice has developed on the sea surface, a stable growth of
ice at the bottom of an ice sheet takes place. As the conditions immediately under the
floating ice sheet are much calmer than the rough conditions during the earlier stages
of ice formation, new crystals of ice grow in a more regular and ordered pattern,
which to a large extent is governed by local thermodynamic conditions. The crystal
growth process is relatively slow, and typically occurs at a daily rate of about 1 cm.
This growth rate decreases as the ice thickens, since the ice cover serves as a thermal
barrier separating the sea water at the freezing temperature from the much colder air
above the ice. The crystal growth process gives rise to the formation of large, regular,
and vertically elongated crystals of diameters ranging from 3 to 100mm. These elon-
gated crystals are composed of horizontal platelets which are approximately 1 mm
thick, and their mechanical properties are the same in all directions in the horizontal
plane. Accordingly, these platelets are laterally isotropic. Since, in the vertical direc-
tions, the properties of ice can, generally, vary, ice which develops under the upper
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30 cm-thick layer of new ice is macroscopically transversely isotropic. Such ice is
known as columnar ice or S2 ice. A similar type of transversely isotropic columnar
ice, known as S1 ice, forms on the surface of fresh water under calm conditions,
typical of lakes and water reservoirs. This type of ice also consists of large verti-
cally elongated crystals, but, compared to S2 ice, it differs in the internal oriented
alignment of characteristic axes of elementary ice crystals. Freshwater ice usually
develops relatively quickly, in a matter of days rather than weeks or months as in
the case of sea ice, and is generally thinner than sea ice. Therefore, freshwater ice
is frequently composed of only S1 ice, and its macroscopic mechanical properties
are the same across the whole depth profile. This is in contrast to a more complex
structure of first-year sea ice, which reflects the history of all processes to which the
ice was subjected during its formation.

Under certain environmental conditions, a somewhat more complex structure
of first-year ice than described above can develop. This may occur under stable
conditions in which uniform directional currents flow inwater onwhich ice is formed
(such conditions can be encountered near sea shores or in rivers). As ice grows under
such flow conditions, its internal structure reflects the presence of the prevailing sea
current direction, and that direction becomes one of preferred orientations in newly
formed anisotropic ice (Weeks and Gow 1978; Stander and Michel 1989). Such ice
is referred to as oriented columnar ice or S3 ice. Ice of this kind is macroscopically
orthotropic, with the strength of anisotropy increasing with depth through the ice
sheet.

In the light of what has been said above, a typical depth profile of first-year
ice forming under Arctic conditions can be schematically illustrated as shown in
Fig. 2.1. The top layer, about 30 cm thick, consists of isotropic granular T1 ice.
Below it there is usually a layer of transversely isotropic columnar S2 ice, which can
extend to a depth of about 2–2.5 m. Depending on the local sea current conditions,
a layer of orthotropic columnar S3 ice can form, though it must be admitted that its
occurrence is relatively rare. Such a regular pattern of layers as depicted in Fig. 2.1 is
characteristic of the so-called land-fast ice (or fast ice); that is, ice which is ‘fastened’
to a coastline. Further offshore, due to wave and wind action, the internal structure of

Fig. 2.1 Typical depth profile of first-year sea ice
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ice becomes less ordered. Inclusions of both granular and columnar ice may occur at
any depth and be incorporated into the ice cover during the freezing process, resulting
in a complicated structure of the ice cover. To make the picture even more confusing,
some amount of ice can be formed on top of already existing coherent sea ice. This
kind of ice is due to sea water that floods the ice surface, and is called infiltration ice.
It is composed of randomly seeded crystals and therefore resembles granular ice.

During the growth process of sea ice, some amount of salt water is being trapped in
ice and forms spherical pockets in its structure. Also some small amount of solid salt
can be deposited between ice crystals (typically, there is no salt inside ice crystals).
Thus, sea ice exhibits some degree of salinity, which depends on the rate of sea water
freezing. In the granular ice layer on top of an ice sheet, typical salinities are of the
order of 8–12 ppt (Sanderson 1988). Lower down in the ice, the freezing process is
slower, resulting in salinities in the range of 5–8 ppt.

As a coherent layer of young/first-year ice continues to grow, it is continuously
subjected to the action of ocean swell and water waves, which often results in floating
ice sheets being broken up into ice floes. Individual floes can have diameters ranging
from tens of metres to several kilometres, depending on prevailing meteorological
conditions. Their planar shape is usually irregular, and their thickness, which is
initially that of the original ice sheet they are formed from, can increase as a result
of floe over-riding and rafting. Large fields of sea ice, composed of a mosaic of
floes separated by open water and smaller ice forms, can extend for hundreds and
thousands of kilometres, forming an ice pack. The region of an ice pack which is
close to the boundary of the open (ice-free) ocean is called the marginal ice zone
(MIZ). Due to an increased action of ocean waves in this region, floe sizes are
typically smaller than those further inside the ice pack, ranging from 10 m to several
kilometres (Dempsey 2000).

All the above-said concerns first-year ice, that is, ice before its first summer
season. As summer temperatures increase, the process of ice deterioration begins.
The thickness of ice decreases due to melting, its surface becomes smoother, and
the coherent winter ice cover disintegrates into floes before the next winter starts.
Ice which has survived at least two summer seasons is termed multi-year ice (MY
ice) or old ice, and much of the polar ice pack in the Arctic is about 5–10 years
old. Sometimes a separate category of second-year ice is distinguished. This ice
forms a characteristic two-layer system, in which the top layer, consisting of ice
that has survived one summer melt season, is underlain by a layer of first-year ice.
The salinity of this ice is in the range 1–4 ppt. With increasing age of ice, and
with successive cycles of its melting and refreezing, the structure of multi-year ice
becomes increasingly complex and variable. If, however, multi-year ice grows under
sufficiently stable conditions, then, similarly to second-year ice, the oldest ice is
that on the top, while at the bottom there is the youngest first-year ice. Such ice
often shows a recognizable annual layer structure, with annual layers being usually
about 30–50 cm thick (Sanderson 1988). In general, multi-year ice is less porous
than first-year ice, and therefore stronger. The salinity of multi-year ice, due to the
continuing expulsion of salt during the growth process, is typically very small, in the
range 0.5–4 ppt. Therefore, in many aspects, the properties of old sea ice resemble
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those of freshwater ice and glacier ice rather than those of first-year sea ice (Timco
and Weeks 2010).

There are some visible differences between sea ice in the Arctic and Antarctica.
In the enclosed Arctic Ocean, there is a considerable convergence of the ice pack,
resulting in a practically continuous process of dynamic interactions between indi-
vidual floes. For this reason, the ice in the Arctic is largely composed of relatively
old multi-year ice, with its average thickness reaching an equilibrium mean value of
about 2–6 m. There are, however, some locations in the bays and fjords of islands
off the northern coasts of Canada at which ice is over 10 m thick. Smaller values
of annually-averaged ice thickness, equal to 2–3 m, are observed off the coasts of
Siberia. A different situation occurs off the coast of Antarctica, where, because of
the absence of natural obstacles, there is much less interactions between ice floes,
and the ice pack is easily blown by strong winds into warmer regions. Therefore,
the ice cover in the Southern Ocean is composed mainly of relatively smooth and
unbroken first-year ice, and is typically only about 1 m thick.

The structure of sea ice in a pack is continuously modified not only by the inter-
action of floes and repeating cycles of melting and refreezing in multi-year ice, but
also by the presence of pockets of brine (a solution of salt and water). As a result of
some complex thermodynamic processes, these inclusions of brine migrate through
ice and expand, evolving gradually into vertical, roughly cylindrical channels of
approximately 0.1–1 cm in diameter (Nakawo and Sinha 1981; Sanderson 1988).
This significantly increases the porosity of ice and weakens its mechanical proper-
ties. However, it can be assumed that for the most common cases of loading acting in
the horizontal plane, the effect of the brine inclusions on the macroscopic structure
of sea ice is small, so the types of ice anisotropy that have developed during the ice
cover formation remain essentially unchanged.

Apart from trapped brine, the porosity of sea ice is also due to the entrapment of
gas, mainly air. Typical gas concentrations in the upper layer of an ice cover (above
sea level) vary from 1 to 5%, while in the lower, more consolidated layers of ice,
the gas content is about 0.5%. Because of the trapped brine and gas, sea ice density
differs from that of pure, bubble-free freshwater ice (917 kgm−3). However, since
brine is denser than solid ice, the effects of gas and brine on sea ice density cancel
each other, so a typical density of sea ice is still close to that of pure ice and is in the
range 915–920 kgm−3. Only in the upper, more porous layer of ice, the density may
be lower, of the order of 890–920 kgm−3 (Nakawo 1983).

2.2 Polar Ice Sheets

Snow that has fallen on a grounded polar ice sheet surface undergoes a long and
complex process of transformation to ice (Paterson 1994). In the first phase of the
process, fresh snowflakes break into tiny snow crystals. These crystals, through the
mechanism of sintering (Schulson and Duval 2009), begin to cluster to form spher-
ical particles. As these particles move downwards, they are subjected to increasing
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pressures leading to the densification of the medium by elimination of air spaces
between the grains. Through certain thermodynamical processes, such as molecular
diffusion and sublimation, larger crystals start to grow at the cost of smaller ones,
and merge. As a result, the material gradually transforms into firn with a density
exceeding 400 kgm−3, compared to the initial density of 50–70 kgm−3 for newly
deposited snow. With the pressure growing during the downward passage of firn,
the density of the material steadily increases and the air spaces between the grains
close, forming bubbles. When the density reaches a value of about 830 kgm−3, the
material eventually transforms into bubbly ice. Under typical Antarctic conditions,
the firn–ice transition occurs at depths of 50–100m below the free surface of the
ice sheet, and the age of ice there ranges from 100 to 200 years. In the coldest and
high-altitude regions of this continent, though—for example near the Vostok polar
station, where the snow precipitation is extremely low—the age of ice at the firn–ice
transition depth (of about 100m) can actually reach 4000 years (Paterson 1994). As
ice descends further into the ice sheet, the ice density increases slowly with depth
because of the gradual compaction of trapped air bubbles, which eventually trans-
form into hydrate crystals. When this occurs, at a typical depth of around 500m,
glacier ice attains the pure ice density of 917 kgm−3.

A typical vertical cross-section of a large grounded polar ice sheet is shown in
Fig. 2.2. Themaximum thickness of ice in Antarctica is about 4.8 km (in East Antarc-
tic Ice Sheet), with an average thickness of 2.1 km; for Greenland the corresponding
values are about 3 and 1.7 km. The horizontal spans of polar ice caps are of the order
of 103 km.At its top, the ice sheet is bounded by the atmosphere, and its bottom either
rests or slides on the underlying bedrock. Due to varying temperatures and precipita-
tion rates, the mass of the ice sheet changes, as does the free surface position. At its
free surface, the ice sheet can be subject to either accumulation, when mass is added
to the glacier, mainly by snowfalls, or ablation, when the glacier losses mass, mainly
through ice melting, water evaporation or iceberg calving. The line separating the
accumulation and ablation regions on the glacier free surface, along which the net
mass flux is zero, is termed the equilibrium line, or the snow line. Mean accumulation

atmosphere

ice sheet

bedrock

margin

gravity

ice divide

accumulation / ablation

friction / sliding

moving free surface

Fig. 2.2 Vertical plane cross-section of a grounded polar ice sheet
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rates for the Antarctic ice cap, expressed as water equivalent, amount to about 140
mm per year (Paterson 1994), with only 20 mm per year at high altitudes in the cen-
tral part of the ice cap. The corresponding rates for Greenland are about 300 mm per
year as the mean value, and 100 mm as the minimum value in the north-central area
of the ice cap. At its bottom, the ice sheet usually loses mass through basal melting,
though a mass gain is also possible through basal refreezing. The overall behaviour
of the entire sheet, with a typical temperature difference of about 30 ◦C between
the glacier free surface and its base, is significantly affected by thermal processes,
such as heat fluxes across the boundaries (for example, a geothermal flux from the
lithosphere at the glacier base), or heat production due to the friction between the ice
and the bedrock.

Themotion of the polar ice sheet is driven by gravity. Typical horizontal velocities
of large polar glaciers are of the order of 100 m per year. The location, where the
horizontal velocity component is zero, is called an ice divide, as it separates regions in
which ice moves in opposite directions. As the particles of ice descend from the free
surface of the ice sheet to its depth (a process that can take as long as 400,000 years),
ice is subject to different stress regimes. Near the divide, ice undergoes mainly
vertical compression, while further away from the divide it is mainly sheared, and
the magnitude of shearing increases with the depth of ice and the distance from the
divide. As ice passes through varying stress and deformation fields, its macroscopic
properties evolve in response to current conditions by a mechanism referred to as
induced anisotropy. As a result, the initially isotropic ice at the free surface becomes
increasingly anisotropic as it moves downwards through the sheet. The evidence of
such increasing anisotropy of the material are ice cores retrieved from boreholes
drilled in Antarctica and Greenland (Gow and Williamson 1976; Russel-Head and
Budd 1979; Herron and Langway 1982; Lliboutry and Duval 1985; Lipenkov et al.
1989; Thorsteinsson et al. 1997; Faria et al. 2014a), showing a considerable alignment
of ice crystals along some preferential directions.

The formation of polar ice and the subsequent evolution of its anisotropic proper-
ties is caused by processes occurring at the ice crystal level. As thesemicro-processes
will be discussed in detail in Chaps. 3 and 6, only the most general features of glacier
ice are briefly outlined at this point. A result of the mechanisms operating on the
crystal scale is the evolution of the internal structure of ice; in glaciology, the ice
microstructure is often called ice fabric. Typical ice fabrics developing in large polar
ice sheets are sketched in Fig. 2.3. The fabrics are presented bymeans of the so-called
equal-area Schmid diagrams, in which the dots represent the positions of individual
crystal c-axes (axes of crystal rotational symmetry) on the unit hemisphere projected
onto the plane of the plot (refer to Sect. 3.2 and Fig. 3.3 on p. 24 for explanations;
here we only note that the more the dots are clustered, the stronger is the ice fabric
anisotropy).

Lliboutry and Duval (1985) and Alley (1992) distinguish three characteristic
regions along the depth of a typical polar ice sheet, according to the mechanisms
dominating the development of fabric in ice.
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Fig. 2.3 Polar ice sheet cross-section and typical ice fabrics

(1) In the upper part of the ice sheet, extending downwards from about 100 m under
the free surface to about one-third of its thickness, the anisotropic structure of
ice starts to form. As shear stresses (which are responsible for fabric evolution)
are relatively small in this region, the anisotropy of ice is moderate. The average
size of crystals increases approximately linearly with the age of ice, from about 1
to about 5 mm, and no new grains are formed at this stage of fabric development.

(2) In the middle part of the ice sheet, shear stress magnitudes increase significantly,
leading to the development of strong anisotropic fabrics, especially in the deepest
regions of the glacier. A characteristic feature is the mechanism of polygoniza-
tion, by which ice crystals undergo splitting, so that new crystals, with spatial
orientations very similar to those of old crystals, are produced. The existing old
crystals continue to grow, but since the total number of grains increases, both
processes balance each other, so the average size of grains changes very little
with depth in this part of the ice sheet (Thorsteinsson et al. 1997).

(3) In the region directly over the bedrock, shear stresses, and hence shear deforma-
tions in ice, attain very large magnitudes. This, combined with high (close to the
ice melting) temperatures initiates a process known as migration (or dynamic)
recrystallization, through which new crystals, oriented favourably for further
deformation, are created at the expense of old grains that disappear. Usually
abrupt changes in the average crystal size occur in this region, so the crystals
generally become much larger than those in region (2), with their typical diam-
eters exceeding 10 mm (Gow et al. 1997; De La Chapelle et al. 1998).
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The fact that polar ice is macroscopically anisotropic has a significant effect on
the overall behaviour of polar ice caps, which has been demonstrated by numerical
simulations of ice sheet flows carried out, for instance, by Mangeney et al. (1996),
Mangeney et al. (1997), and Staroszczyk and Morland (2000). The results of the
simulations have shown that velocities at which the whole ice sheet flows are about
twice as high for an anisotropic ice as those calculated on the assumption of isotropic
ice. This clearly indicates that the phenomenon of induced anisotropy is important
and therefore must be taken into account in the analysis of polar ice sheet behaviour.

2.3 Polar Ice Shelves

An interesting feature of polar ice are ice shelves, which surroundmuch ofAntarctica.
These are large and thick sheets of ice floating on the sea surface and attached to
grounded glaciers, as illustrated in Fig. 2.4. An ice shelf is fed by ice coming from
the glacier and by snow falling on its top surface. It loses mass through melting on
its bottom surface and iceberg calving occurring at its seaward margin (at the ice
shelf tongue). The motion of the shelf is driven by gravity forces and forces exerted
by the grounded ice sheet. Except a relatively narrow transition zone, extending a
few ice thicknesses along the grounding line (the place where ice starts to float), the
movement of ice in the floating shelf is largely horizontal, with constant velocity
profiles across the shelf thickness. Because of the uniformity of the velocity field,
the deformation pattern within the ice shelf is that of longitudinal stretching, in stark
contrast to the simple shear deformation pattern governing the flow of the feeding
ice sheet.

The structure and properties of the ice shelf resemble those of its parent continental
ice sheet. It has the same pattern of characteristic layers, whose densities increase
with depth. The top layer consists of firn of density as low as about 400 kgm−3, so
that air and water can pass freely through spaces between ice grains. Typically, a
true ice begins at a depth of approximately 50m, where its density reaches about

Fig. 2.4 Vertical plane cross-section of an ice shelf
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800 kgm−3, and at depths below 200m pure bubble-free ice, of a density exceeding
900 kgm−3, is found.

The largest of the Antarctic ice shelves is the Ross Ice Shelf. It has an area of about
0.5 million km2, so it is approximately the size of France and extends up to some
800 km off the coast of the continent. The thickness of this shelf varies from about
1000 m near the grounding line to about 250 m at the margin, and it moves out into
the Ross Sea at an average speed of 1.5–3 m per day (about 500–1000 m per year).
The seaward edge of the Ross Ice Shelf is formed of ice cliffs which are up to 50 m
high. It is the place where the world’s largest ever recorded iceberg, named Iceberg
B-15, was calved in March 2000. This iceberg was nearly 300 km long and 37 km
wide, so its surface area of about 11,000 km2 was larger than that of the island of
Jamaica. The iceberg, whose movement was accurately traced by satellites, drifted
in the Southern Ocean for over six years, colliding with other icebergs and gradually
breaking into smaller pieces. One of these pieces, still rising some 30 m from the sea
surface, was seen in November 2006 as far as near the coast of New Zealand. More
information on icebergs is provided in the next section.

2.4 Icebergs

Icebergs are large masses of floating ice which have calved from the seaward edges
of ice shelves or land-based glaciers. Icebergs can be found in the oceans around
Antarctica, in the seas of the Arctic, and in fjords, bays and lakes fed by glaciers (for
instance, by the glaciers of Svalbard, Ellesmere andBaffin Islands). Themain sources
of icebergs are the Antarctic ice caps in the Southern Hemisphere and the Greenland
ice cap (especially its west coast) in the Northern Hemisphere. In Antarctica, most
icebergs break off from floating polar ice shelves, which occupy about one-third of
the Antarctic coastline.

There are two main types of icebergs (Sanderson 1988): tabular icebergs and
blocky icebergs. Because of its characteristic shape and size, Iceberg B-15, with a
flat top surface and steep sides, belongs to the class of tabular icebergs. Since such
icebergs originate from polar ice shelves, they are common in waters surrounding
Antarctica. Iceberg B-15 was an extreme example of a tabular iceberg. They are
usually smaller in size and have the form of slabs of ice, with typical diameters
ranging from 0.5 to several kilometres. In general, their length to thickness ratio is
about 1 :10. Blocky icebergs, on the other hand, are formed by ice breaking off from
grounded polar glaciers. Such icebergs, in contrast to tabular icebergs, are irregular
in shape and typically smaller. Their characteristic size ranges from 50 to 500 m,
with a typical length to thickness ratio between 1 :1 and 1 :2.

The upper part of a newly calved iceberg is usuallymuchwarmer than its parent ice
shelf or grounded glacier, which is caused by its intensive melting when the iceberg
drifts into warmer waters and higher air temperatures in regions off the coasts of
Antarctica or Greenland. The meltwater created at the surface percolates downwards
through the uppermost part of the iceberg, thus transfers heat, and gradually warms
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the deeper regions of ice. As a result of this process, the whole above-water part
of the iceberg is relatively quickly brought to temperatures which are close to the
melting point. Due to this warm temperature and high porosity of ice, a relatively
quick disintegration of the upper part of the berg occurs. Contrary to that, the under-
water core of the berg, with typical centigrade temperatures around 15◦–20◦ below
zero, remains cold, and therefore mechanically strong, for a long time (up to several
years).

The above-described thermodynamic processes can significantly change the initial
shape and structure of an iceberg. This gives rise to two types of transformed icebergs:
dome icebergs and dry-dock icebergs. A dome iceberg results from a berg which has
become unstable and has therefore inverted in the water, exposing its rounded and
smoothed surfaces which were initially below the sea surface. A dry-dock iceberg
is a result of heavy erosion of the upper part of a berg by sun and wind, whereby
its top surface becomes very irregular and often exhibits sharp spikes and pinnacles
of very picturesque shapes. At final stages of the ice disintegration process, small
forms known as bergy bits and growlers can develop. The former are about 10 m in
diameter, while the latter are about 2–3 m in size.

The motion of an iceberg is generally governed by water currents within the
top 100–200 m of the sea, with a significant contribution from winds (the latter
can increase the speed of an iceberg by 0.1 to 0.3ms−1 above the speed resulting
from the sole action of currents). In addition, the motion of icebergs is considerably
influenced by the Coriolis effect. In general, the trajectories of icebergs are very
complex and hardly predictable, so that coherent iceberg drift patterns are rarely
observed (Sanderson 1988).
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Chapter 3
Properties and Mechanical Behaviour
of Ice

In this chapter the properties of ice which are important in the context of this book
are described. First, the basic data concerning various forms of ice are presented, and
relevant physical parameters are given. Then, in Sect. 3.2, the crystalline microstruc-
ture of ice is discussed, with the focus on the anisotropy of a single crystal and the
consequences it has for the microscopic deformations experienced by the crystals.
This is followed by the discussion of the macroscopic mechanical properties of poly-
crystalline ice and its ductile, Sect. 3.3, and brittle, Sect. 3.4, responses to loading.
In the concluding Sect. 3.5 thermal properties of ice are briefly discussed.

3.1 Basic Properties of Ice

Ice is water in a solid state. It exists in either crystalline or amorphous form. Virtually
all ice present in natural conditions on Earth is of the crystalline form. Amorphous
ices can be made only at low temperatures in laboratory conditions, by employing
a number of methods. For instance, by condensing water vapour below −160 ◦C, or
by applying high pressure to ordinary ice at −196 ◦C. In this way three amorphous
forms of ice can be produced: low-density ice (940 kg m−3 at −196 ◦C at 1 atmo-
sphere), high-density ice (1170 kg m−3 under same conditions) (Schulson and Duval
2009), and very-high-density ice (1260 kg m−3 at −196 ◦C at pressures between 1
and 2 GPa). Essentially, natural amorphous ice can occur only in extra-terrestrial
conditions (for example on some satellites of Jupiter or in comets), though some
traces of it can be detected in the coldest regions of Earth’s atmosphere.

There are 16 crystalline forms of ice known in physics so far. They exist at various
temperatures and pressures, as illustrated in a phase diagram of water presented in
Fig. 3.1. It is known that the largest possible pressures to which ice is subjected
on Earth are those occurring at the bottom of the Antarctic ice cap (at present of a
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Fig. 3.1 Phase diagram of
water. The numbers in
parentheses denote densities
expressed in g cm−3

(Schulson and Duval 2009)

maximum thickness of about 4800 m), and the magnitude of these pressures does
not exceed 45 MPa. Hence, it follows from the phase diagram that the only stable
form of ice that can exist on our planet is the one called ice I. The other forms can
be produced only in a laboratory, or observed on the surfaces of extra-terrestrial
bodies (Hobbs 2010; Schulson and Duval 2009). Depending on how the oxygen
atoms are arranged in ice crystals, two related variants of ice I exist: hexagonal ice,
denoted by Ih, and cubic ice, denoted by Ic. The hexagonal ice, the microstructure
of which is described in detail in the following Sect. 3.2, is the one which is formed
when liquid water is cooled down to 0 ◦C (273.15 K) at Earth’s normal atmospheric
pressure (101.325 kPa). The density of such ice at 0 ◦C is 916.7 kgm−3. The cubic
crystalline variant of ice I is a rare form in which the oxygen atoms are arranged in
a diamond structure. It can be made in a laboratory at temperatures between −143
and −53 ◦C. Like the amorphous ice, some traces of ice Ic can be present in the
upper layers of Earth’s atmosphere. Since this book is concerned entirely with the
mechanics of the sea and land-based ice, whenever the term ‘ice’ is used throughout
the rest of this work, it will always signify ice Ih.

Owing to its regular and ordered crystalline structure, natural ice can be consid-
ered a mineral, or a rock. As it exists in natural conditions on Earth at very high
homologous temperatures, usually above 0.9 (which corresponds to about 246 K, or
−27 ◦C), therefore it behaves in a way that is very similar to the behaviour of the
majority of metals and rocks close to their melting point. When ice is subjected to
stress, it displays awide range ofmechanical responses, depending on the stressmag-
nitude and strain, as well as on strain-rate and temperature. Schematically, the typical
history of stress in polycrystalline ice during its sustained loading can be sketched as
in Fig. 3.2 (adapted from Sanderson 1988). At low stress levels, ice shows an instan-
taneous elastic response and is a creeping, ductile material, the behaviour of which
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Fig. 3.2 Typical history of
stress in polycrystalline ice
under sustained loading

depends on the rate of deformation and the deformation history. At high stresses and
strain-rates, in turn, ice is an extremely brittle material (more so than glass) which
may fail by brittle fracture as a result of the formation and propagation of cracks. The
distinction between ductile and brittle behaviour of ice is one of the central aspects
of ice mechanics, with the ductile-to-brittle transition phase playing a key role, since
usually during this phase the stresses in ice attain maximum magnitudes. Therefore,
this transition stage is of special interest in engineering problems, in which an inter-
action between sea ice and a man-made structure occurs, and forces exerted by ice
on the structure need to be determined. In land-based polar ice flow problems, on the
other hand, due to long time scales involved, viscous creep is a dominant mode of
ice deformation. Hence, the brittle effects in ice are then of little importance on the
scale of large polar ice sheets, as these effects are essentially confined to relatively
small regions near the glacier margins, where the calving of icebergs takes place.

Due to the complexity of the material response depending on so many factors,
and the fact that the internal structure of the material can evolve under stress and
strain, it is impossible to describe the behaviour of ice by applying simple classical
constitutive relations known from other disciplines of mechanics; therefore, special
approaches are required. As concerns the ductile response of ice, and in particular
its creep, this can already be regarded as a relatively well-understood topic, owing
to numerous laboratory experiments and field observations carried out in the past
decades.Also, satisfactory theoreticalmodels have already been developed to explain
the observed behaviour of ice. This can be said at least for the case of isotropic ice,
since for strongly anisotropic ice there are still no well-established constitutive laws
that would be generally accepted by the community of theoretical glaciologists.
As regards the fracture behaviour of ice, on the other hand, the picture is still far
from clear and complete. Firstly, because experiments on the brittle behaviour of
ice are very difficult to conduct and are less repeatable than those performed to
examine the ductile behaviour of ice, and in addition the mechanisms controlling the
process of brittle failure are insufficiently understood. Secondly, the theory necessary
to describe the fracture mechanism is complicated and requires the knowledge of
advanced methods of mechanics.
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This chapter gives an account of fundamental physical properties of ice, with
the focus on its mechanical properties, and briefly presents some basic constitutive
relations that can be used as a first approximation to describe the behaviour of ice in
different regimes. We start from the description of the microstructure of the mate-
rial, concentrating on the most important properties of individual ice crystals and on
micro-mechanisms underlying various types of macroscopic deformations. This is
followed by a description of the ductile behaviour of polycrystalline ice, and some
basic constitutive equations are presented for the elastic and creep response of the
material. Further, the brittle behaviour of ice is considered, by first discussing the
ductile-to-brittle transition in ice, and then by addressing the issues of fracture tough-
ness of ice, followed by the description of the brittle behaviour of ice under tension
and compression. The chapter is concluded with some remarks on thermal properties
of ice, since thermodynamic effects are important in many problems involving both
sea and grounded polar ice.

3.2 Microstructure of Ice

The macroscopic mechanical behaviour of ice is essentially determined by the
microstructure and properties of individual crystals, and the way they are oriented
relative to one another in a polycrystalline aggregate.As alreadymentioned in the pre-
vious section, an ice crystal possesses hexagonal symmetry, and therefore it belongs
to the same family of hexagonal crystals which includes, among others, such metals
as cadmium, magnesium, titanium and zinc, and also many minerals, ceramics, etc.

Since ice forms from liquid water, its crystalline structure reflects the geometri-
cal features of the water molecule, by repeating a tetrahedral coordination of oxygen
atoms, which are bonded through hydrogen to four adjacent oxygen atoms. Schemat-
ically, the hexagonal ice crystal lattice is illustrated in Fig. 3.3. In the crystal lattice,
oxygen atoms are situated at each of the vertices of the hexagonal rings, and the
edges of these rings are formed by hydrogen bonds. The spacing between oxygen

Fig. 3.3 Hexagonal crystal
of ice
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atoms along each bond is about 0.276 nm, and is the same between any two bonded
oxygen atoms in the lattice. The planes parallel to the crystal hexagonal bases are
called basal faces, or more often basal planes, the lateral sides of the crystal are
called prismatic planes, and the direction which is perpendicular to the basal planes
is referred to as the crystal c-axis (or optic axis). The orientation in space of the
latter axis is important, as it defines various properties of ice, in the first place those
relating to the anisotropy of ice. There are also two other characteristic axes that
can be distinguished in the ice Ih crystal, a and b, but these play little role in the
mechanics of ice.

A closer insight into themicrostructure of ice reveals, though, that hexagonal rings
are not perfectly planar, since the six oxygen atoms forming a ring are arranged not
in one plane, but in two parallel planes, so that there are three oxygen atoms in each
of the planes, with alternate atoms in the ‘upper’ and ‘lower’ planes (Paterson 1994),
see Fig. 3.4 for illustration. The distance between any pair of such planes, in which
oxygen atoms forming a hexagonal ring lie, is equal to 0.0923 nm,which ismuch less
than the distance of 0.276 nm separating adjacent pairs of planes. For comparison,
the distance between any two parallel prismatic faces in a crystal is 0.4523 nm. The
latter quantity is often used as the length of the Burgers vector for ice (the Burgers
vector describes the direction and magnitude of the crystal lattice distortion due to
the presence of a dislocation in the lattice). When viewed along the c-axis direction,
the consecutive parallel planes in which oxygen atoms lie are arranged in an alternate
pattern, so that they are mirror images of each other. Any of these parallel planes can
be regarded as a crystal basal plane, though one can assume for simplicity that the
basal plane is that lying midway between the two planes containing oxygen atoms
belonging to hexagonal rings.

Fig. 3.4 The structure of
hexagonal ice crystals: a the
projection on the plane
parallel to the crystal basal
planes, b the projection on
the plane parallel to the
c-axes and the dashed line
A–A in (a). The black/white
circles denote oxygen atoms
in the upper and lower
planes, respectively, and the
numbers denote
corresponding atoms in (a)
and (b). After Paterson
(1994)

(a)

(b)
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Since oxygen atoms have much stronger bonds within the layers of hexagonal
rings than across the layers (there are three bonds within a layer but only one across
to the next layer), creep deformation by basal slip (resulting from the movent of
dislocations in the crystal lattice) requires a stress of much smaller magnitude than
that needed for non-basal deformations. Therefore, the basal plane can be also called
the easy glide plane. The existence of such preferential glide planes in an elementary
crystal of ice Ih is the reasonwhy the latter exhibits very strong anisotropy in terms of
its creep shearing resistance in different slip planes. This property has very important
implications for the macroscopic behaviour of a polycrystalline aggregate, since any
alignment of individual ice crystals which is different from random results in the
macroscopic anisotropy of the material as a whole.

Ice crystals are usually of extreme purity, irrespective of the composition of water
from which they are formed, since only few chemical substances are able to fit into
the ice crystal lattice. Therefore, even in the case of sea ice which is formed from
a strong saline solution of sea water, the ice itself contains a negligible amount
of salt incorporated into its crystalline structure, which means that the mechanical
properties of such ice are not significantly different from those of pure ice. Individual
elementary ice crystals form larger crystallites, ormonocrystals, whose characteristic
dimensions are of the order ofmillimetres in the case of sea ice, and a few centimetres
in the case of polar ice. In natural ice masses, crystallites are usually clustered into
larger grains. The grains are of random shape and are approximately of similar sizes,
andmay consist of up to several crystallites, though in polar ice sheets grains are often
made up of only one or two of them (some authors do not make distinction between
the crystallites and the grains, and treat them as equivalent entities). Grains, in turn,
form larger structures called polycrystals which, in general, contain many grains
varying in shape, size and orientation. When the orientations of individual crystal
c-axes in a polycrystalline aggregate are distributed at random then the polycrystal
can be considered macroscopically isotropic, otherwise it displays some form of
macroscopic anisotropy.

As individual ice grains in a polycrystal are stressed due to applied loading, they
deform themselves and interact with each other in a way that depends considerably
on how the crystal basal planes are oriented to the applied stress field. The crystal
c-axes, in turn, gradually rotate in response to the current stress configuration, giving
rise to the evolution of the preferred orientations of c-axes, or fabric. Such a process
of the evolution of the macroscopic properties of polycrystalline ice, known as the
induced anisotropy, is of a paramount significance for the polar ice creep behaviour.
Since this mechanism is very slow and occurs over time scales of thousands of years,
it plays no role in the sea ice applications.

The micro-processes taking place at the grain level lie behind various types of
macroscopic deformationmodes observed in the bulk ice. A simplified picture of this
is sketched in Fig. 3.5, adapted from Sanderson (1988), and illustrates the behaviour
of a single grain as a sample of polycrystalline ice is subjected to uniaxial com-
pression. A number of different deformation mechanisms occurring on the grain
micro-scale can be distinguished. Initially, immediately after the sample has been
stressed, a grain deforms in a purely elastic and reversible manner due to either
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(a) (b) (c) (d)

Fig. 3.5 Schematic illustration of processes occurring at the grain level during loading of an ice
sample: a purely elastic deformation; b delayed elastic deformation; c viscous deformation; d brittle
deformation due to crack formation and propagation. Adapted from Sanderson (1988)

lengthening or shortening of atomic bonds (Fig. 3.5a), giving rise to the bulk instan-
taneous elastic strain. Simultaneously, as a result of shear stresses generated between
grains (Fig. 3.5b), sliding takes place on the grain boundaries (Sinha 1979). This
sliding is accommodated by the elastic deformation of the grain, with no permanent
deformation inside the grain, since all the atomic rearrangement processes take place
only at the boundaries. This means that some elastic energy is stored in the crystal
during its deformation, and this energy can be recovered if the applied compressive
stress is relaxed. In order to do so, some work on the grain boundaries has to be done
to reverse all the sliding that has taken place, and this requires time. Hence, there
is some delay in the material response to changing stresses, and the macroscopic
deformation associated with this micro-mechanism, which is fully reversible (Sinha
1983), is known as the delayed elastic strain.

Apart from the elastic, reversible deformations in ice, which are relatively small,
also permanent changes usually occur in and between the grains, resulting in much
larger irreversible macroscopic deformations. These deformations occur at all stress
levels, and take place in characteristic discrete bands parallel to the crystal basal
planes, in a mechanism that resembles a pack of cards sliding on each other. The irre-
versible deformation of ice, usually referred to as creep, is due to the presence of point
defects in the crystal lattice, where a bonding between the oxygen atoms is formed
by two hydrogen atoms, or there is no hydrogen atom at all. These irregularities in
the crystal lattice, called dislocations, enable the deformation of the material through
the mechanism of switching the hydrogen atoms from one bond-site to another, in
a process known as the dislocation glide (Goodman et al. 1981) . This is illustrated
in Fig. 3.5c, in which the dislocation movements are represented by arrows. As the
defects propagate (migrate) through the grain, they can gradually accumulate, or pile
up, at the grain boundaries, and thus resist further creep, making the polycrystalline
ice harder to deform. To soften again, the material tends to recrystallize, a process
in which either the crystal basal planes change their orientation to facilitate further
deformation, or the existing grains are divided, or entirely new, favourably oriented
grains are formed at the expense of old grains that vanish. This mechanism, which
can considerably modify the macroscopic creep properties of ice, is termed migra-
tion recrystallization and is observed in ice cores retrieved from bottom layers of
ice sheets in Antarctica and Greenland (Gow et al. 1997; Thorsteinsson et al. 1997).
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Finally, when the stress applied to the ice sample acts for a sufficiently long time,
the dislocations which piled up at the grain boundaries move towards the junction
of three grains (Fig. 3.5d). This initiates the process of nucleation of cracks, which
dramatically accelerates macroscopic strain-rates andmay eventually lead to a brittle
fracture of the material.

Although the single ice crystal is hexagonally symmetric, its mechanical proper-
ties, with a high degree of accuracy (Kamb 1961), can be considered to be those of
a transversely isotropic medium, with the crystal c-axis being the axis of material
symmetry, and the crystal basal plane being the plane of isotropy. Thus, the elastic
properties of the crystal can be described by five independent constants (Green and
Zerna 1992). Experimental measurements of these constants, carried out by Gam-
mon et al. (1983), have shown that the degree of elastic anisotropy of the single
crystal of ice is relatively small. At −16 ◦C, the values of Young’s moduli along
and normal to the c-axis are equal to 11.85 GPa and 9.69 GPa, respectively; that
is, they differ by about 22%. The shear moduli in the planes containing the c-axis
(the prismatic planes) and normal to it (the basal plane) are 3.01 GPa and 3.42 GPa,
respectively, showing a difference of about 14%.Within the range of 0 to−50 ◦C, the
single crystal elastic constants display a relatively weak dependence on temperature,
with about a 1.4% increase in their respective values for every 10 ◦C decrease in
temperature.

As regards the creep behaviour, the anisotropy of ice Ih is much stronger than
it is in the case of the elastic response. This has been demonstrated by Duval et al.
(1983), who compiled and compared the results of creep tests on ice monocrystals
then available in the literature. Fig. 3.6, adapted from their paper, summarizes the
creep data for basal and non-basal glide in crystals at a temperature of −10 ◦C. The
data for basal glide have been obtained in simple shear tests, while those for non-basal
glide come from axial compression tests conducted in the direction normal to the
crystal c-axis; therefore all the data have been converted to equivalent stresses and
strain-rates. For comparison, the creep data for an isotropic polycrystal (that is, the
one with a random orientation distribution of constituent crystals) are also displayed.
It can be seen from the diagram that, at a prescribed strain-rate, the stresses required
for non-basal deformation are of up to two orders of magnitude greater than those
needed for basal slip. It is also evident from the plots that the creep response of ice
is strongly non-linear.

Also in contrast to the elastic response, the creep of ice is a strongly temperature-
dependent phenomenon. At low temperatures, below, say,−20 ◦C, the creep temper-
ature dependence is commonly described in glaciology by means of an Arrhenius-
type law (Glen 1955; Paterson 1994; Hutter 1983), relating the creep strain-rates to
the absolute temperature in an exponential manner. At higher temperatures, though,
especially very close to the ice melting point, experimental evidence (Mellor and
Testa 1969b) indicates that the Arrhenius law is inadequate, and therefore other rela-
tions have been derived by correlation with empirical data; for instance, the relations
proposed by Smith and Morland (1981).
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Fig. 3.6 Creep data for
basal and non-basal creep of
ice monocrystals, and for
creep of an isotropic
polycrystal, at −10 ◦C.
Adapted with permission
from Duval et al. (1983).
Copyright 1983 by the
American Chemical Society
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3.3 Ductile Behaviour of Polycrystalline Ice

In principle, the macroscopic ductile (elastic, viscoelastic and creep) properties of
polycrystalline ice can be tested by applying the same, or very similar, techniques
that have already been developed in other branches of experimental solid mechan-
ics. Hence, laboratory tests usually consist in subjecting ice specimens to prescribed
stress, strain and/or strain-rate regimes in simple geometric configurations, such as
uniaxial compression and tension or simple shearing, etc. However, what is specific
of ice and distinguishes it from other materials is (1) the necessity of conducting
experiments at negative Celsius temperatures, and (2), in order to reproduce small
strain-rates occurring in natural conditions, the necessity of performing measure-
ments over long periods of time, ranging from hours and days in the case of sea
ice, up to several years in the case of polar ice. Such long measurements times are
required to develop anisotropic fabrics in creeping ice from initially isotropic ice
samples.

An important conclusion following from many experiments is that, basically, the
elastic properties of natural sea ice are very similar to those of pure ice, provided
that an appropriate normalization of experimental results is performed in order to
account for the possible porosity of ice (due to the presence of brine), as well as for
other factors that cause the weakening of the structure of sea ice (Timco and Weeks
2010). Such similarities significantly simplify the analysis of the empirical data, since
the most important rheological parameters pertaining to sea ice can be inferred from
tests conducted on freshwater ice that can be easily prepared in laboratory conditions.
Creep tests on ice are most frequently carried out by placing an ice specimen under
constant stress or constant load, and measuring its deformation as a function of time,
possibly with additional measurements of ice porosity and ice flaws (in the case of
sea ice), and crystal size, ice anisotropy parameters, etc., (in the case of polar ice). In
the case of the creep properties of sea ice, in contrast to elastic properties, there is no
simple correspondence between the parameters for real sea ice and the parameters
obtained in laboratory experiments, as it is difficult to reproduce large-scale natural



www.manaraa.com

30 3 Properties and Mechanical Behaviour of Ice

Fig. 3.7 History of strain in
polycrystalline ice under
constant stress suddenly
applied at time t0

conditions in a laboratory. On the other hand, the parameters measured during tests
on small specimens of ice retrieved from boreholes agree well with those of natural
polar ice, as long as the stress relaxation in the ice samples is accounted for.

A typical deformation history during a constant-stress test on polycrystalline ice is
illustrated in Fig. 3.7, which plots strain as a function of time t . The general features
of the strain curve shown in this figure (recalling the discussion of micro-processes
occurring in ice on the grain level presented in Sect. 3.2, and also referring to Fig. 3.5)
are as follows.When the loading is applied to a sample at time t0, then it undergoes an
instantaneous elastic strain, fully recoverable and increasing approximately linearly
with stress. Typically, this strain is of amagnitude 10−4 at a stress of 1 MPa. After the
initial elastic impulse, a transient-time delayed elastic strain develops, which is also
recoverable upon the stress removal. This first stage of the strain increase in ice under
the applied loading is termed primary creep or transient creep, and it decelerates
with time. Simultaneously, an irreversible deformation in the material has already
started, as the latter takes place in polycrystalline ice at any stress level. With still
increasing strain, in which the irreversible creep component gradually overtakes the
elastic counterpart, the material enters the stage in which the total strain varies about
linearly with time; that is, the strain-rate is approximately constant. At this point
(corresponding to the inflection point of the curve shown in Fig. 3.7), the strain-
rate attains its minimum value. This phase is called secondary creep, or steady-state
creep. Secondary creep is present throughout the whole loading history of ice, but
it becomes apparent only when the delayed elastic strain-rate approaches zero, thus
allowing the creep strain to dominate the deformation. Once the stage of apparently
stable secondary creep has been completed, which typically occurs at strains equal to
about 0.1 (10%), the behaviour of polycrystalline ice becomes more complex. Two
distinct situations can arise, primarily depending on stress levels in ice. At smaller
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Fig. 3.8 Strain-rate
dependence on strain during
creep of polycrystalline ice
under constant stress and
temperature

stress magnitudes, ice continues to deform in a ductile manner, entering the stage of
tertiary creep. Typically, strain-rates in the first phase of tertiary creep accelerate,
before reaching another steady state in which very large deformations can develop
in ice without causing any damage to the material. The acceleration of the creep
process is due to the adjustment of the internal structure of ice to the current stress and
strain configurations by the recrystallization mechanisms, as described in Sect. 2.2.
All these mechanisms contribute to the development of anisotropic features in ice.
Another situation arises at larger stress magnitudes, at which microcracks form at
grain boundaries and subsequently coalesce and propagate through the material. As
a result, the deformation of ice becomes much more unpredictable, and eventually
the material fractures.

Corresponding to the plot of the strain history shown in Fig. 3.7 is the creep
curve displayed in Fig. 3.8, illustrating the dependence of strain-rate on strain under
the constant-stress conditions (Mellor 1980; Mellor and Cole 1982; Budd and Jacka
1989). It has been demonstrated by Mellor and Cole (1982) and Jacka (1984) that
the general form of the creep curve shown in the figure holds over wide ranges of
stress, strain-rate and temperature.

The three above-described stages of creep are shown in Fig. 3.8. Primary (decel-
erating) creep turns out to be a grain-size dependent process (Sinha 1983; Ashby
and Duval 1985): the smaller the average grain diameter, the larger the strain-rate
generated by a given stress. In contrast, secondary (steady-state) creep does not
depend on the grain size (Duval and Lorius 1980). A characteristic feature is that
the strain at which a minimum strain-rate ε̇min (indicated in the figure) develops in
polycrystalline ice during secondary creep varies very little with the applied stress.
This strain, denoted by εmin in the plot, is of order 10−2. For instance, Jacka (1984),
after conducting a series of creep tests on ice at temperatures ranging from −32
to −5 ◦C and stress magnitudes varying from 0.05 to 1.2 MPa, has concluded that
the (octahedral) strain εmin is equal to about 0.6 × 10−2. By the time the minimum
strain-rate ε̇min has been reached during secondary creep, the internal structure of
ice essentially does not change; therefore, isotropic/anisotropic properties of ice can
be regarded as constant. This situation can change during tertiary creep, when the
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mechanisms of recrystallization can take place, giving rise to the development of
strong anisotropic fabrics in ice. It is seen in Fig. 3.8 that strain-rates which can be
generated in polycrystalline ice during the steady stage of tertiary creep (the horizon-
tal straight line segment of the creep curve) can be much greater than the minimum
strain-rates occurring during secondary creep. This is proved by the results of exper-
iments conducted by Duval (1981) and Budd and Jacka (1989), showing that the
ratio of the maximum to minimum strain-rates during creep in polycrystalline ice
can be as large as about 10. The latter ratio of the maximum to minimum strain rates
is termed in glaciology enhancement factor.

It is well known that most of natural materials, such as metals and rocks, creep
due to both plastic and viscous irreversible strains developing in the material sub-
jected to loading. In this context, it is interesting to analyse the types of deforma-
tions that occur in polycrystalline ice in different stress and temperature regimes.
Goodman et al. (1981) investigated this problem experimentally, and the results
which they obtained are presented in Fig. 3.9 adapted from Duval et al. (1983). The
figure shows dominant deformationmechanisms in ice depending on the homologous
temperature T/Tm and the normalized shear stress σ/G, where T and Tm denote,
respectively, temperature and melting point, both expressed in (K), σ is shear stress,
and G is the shear modulus. It is seen in the diagram that for typical temperatures
(T/Tm � 0.7) and stresses (σ/G ∼ 10−4 − 10−2) encountered in natural conditions
on Earth, polycrystalline ice creeps by viscous deformation, without exhibiting any
apparent plastic effects developing in the material at earlier stages of its loading.
For this reason, it seems fully justified to treat ice as a viscous material; that is, the
material which creeps, or flows, at any stress level. Such an approach has been a
common practice in theoretical glaciology since the formulation of a viscous flow
law for isotropic ice by Glen (1955).

Fig. 3.9 Deformation
mechanism diagram for
polycrystalline ice of a 1 mm
grain size. Adapted with
permission from Duval et al.
(1983), Fig. 1. Copyright
1983 by the American
Chemical Society
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In what follows, the elastic, viscous creep, and brittle behaviour of polycrystalline
ice is discussed in turn. The characteristic properties of ice for the above three types
of the behaviour are presented, and basic constitutive equations that describe the
material response to stress are given. At this point it is assumed that ice is either
isotropic or anisotropic, but with a non-evolving microstructure in the latter case.
The constitutive modelling of polycrystalline ice with evolving anisotropy, which
at present is one of the most important problems in mechanics of polar ice, will be
extensively treated further in this book.

3.3.1 Elastic Behaviour

In general, two different methods can be applied to measure the elastic properties of
ice. In the first, more traditional method, a sample of ice is compressed, extended or
sheared in simple configurations, or a beam of ice is bent, and relevant displacements
aremeasured in order to determine elastic constants. The problemwith thismethod is,
however, that the load has to be released very quickly (in a matter of seconds) after its
application. Otherwise, irreversible creep deformations that develop in the material,
even in such a short period of time, can considerably obscure the results. Therefore, a
better approach is to evaluate the required elastic parameters by measuring the speed
of soundwaves propagating through thematerial (Gammon et al. 1983; Schulson and
Duval 2009). As the displacements induced then in ice are very small, irreversible
effects are small as well. The parameters determined by applying such a method are
called dynamic constants, and their numerical values are widely regarded as the most
accurate.

The purely elastic behaviour of polycrystalline ice is commonly described by
Hooke’s classical linear law

σi j = Ci jkl εkl (i, j, k, l = 1, 2, 3), (3.1)

where σi j and εi j are, respectively, the Cauchy stress and infinitesimal strain tensor
components, Ci jkl are the components of the forth-order elastic moduli tensor, and
repeated indices imply summation. In the most general case of elastic anisotropy, the
material is characterized by 21 independent elastic constants, the number of which
reduces to nine for orthotropic materials, to five for transversely isotropic materials,
and to two for isotropic materials (Green and Zerna 1992).

The values of some elastic parameters for a single crystal of ice Ih are already
given in Sect. 3.2 on p. 28; the full lists can be found, for example, in the books
by Hobbs (2010) and Schulson and Duval (2009). The analogous parameters for a
polycrystal, of any kind of its anisotropy, can be derived from the elastic parameters
of the crystal by applying one of several homogenization techniques developed in
continuummechanics (Hill 1952, 1965). Some of these averaging techniques will be
described in detail further in this bookwhen dealingwith the viscous creep properties
of polycrystalline polar glacier ice. Here the details of these techniques are omitted
and only the quantitative results are presented.
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One of the homogenization methods is based on the assumption of stress unifor-
mity throughout a polycrystalline aggregate. Sinha (1989) employed thismethod, and
after making use of the experimental data obtained by Dantl (1969) he evaluated the
values of the macroscopic elastic constants and their temperature dependence of the
most common types of natural ice. Sinha’s estimates of the Young and shear moduli
for granular T1 ice (which is isotropic) and columnar S2 ice (which is transversely
isotropic) are as follows:

(a) granular T1 ice

E(T ) = 8.93 + 1.2 × 10−2(Tm − T ) [ GPa ],
G(T ) = 3.41 + 4.5 × 10−3(Tm − T ) [ GPa ]; (3.2)

(b) columnar S2 ice

EV (T ) = 9.61 + 1.1 × 10−2(Tm − T ) [ GPa ],
EH (T ) = 9.39 + 1.3 × 10−2(Tm − T ) [ GPa ],
G H (T ) = 3.37 + 4.7 × 10−3(Tm − T ) [ GPa ];

(3.3)

where E and G are, respectively, the Young and shear moduli for isotropic ice, EV

and EH are the Young moduli in the directions parallel and normal to the length
of the column, respectively, G H is the shear modulus in the plane of isotropy of
columnar ice, T is the absolute temperature, and Tm = 273.15 K is the ice melting
temperature. The above relations describe the obvious increase in the strength of ice
with decreasing temperature. It can be noticed that the shear moduli are much less
sensitive to temperature than the Young moduli.

Another, and a more general approach than that by Sinha (1989), was applied by
Nanthikesan and Shyam Sunder (1994). They used two extreme averaging approxi-
mations, namely the stress and the strain homogeneity conditions in the aggregate, to
estimate the lower and upper bound limits on the elastic constants to be determined.
Using the experimental results obtained by Gammon et al. (1983), Nanthikesan and
Shyam Sunder have found that the two bounds are very close to each other: for
isotropic polycrystalline ice they lie within 2.5% to each other, while for columnar
S2 ice the bounds for corresponding constants differ by nomore than 4.2%. Since the
currently available measurement techniques have a comparable percentage resolu-
tion (which is about 1% in the technique applied by Gammon et al.), it seems that for
practical purposes both limit bounds, or an average of these, can be used to provide
reliable approximations to the exact values of elastic constants of polycrystalline ice.
Obviously, the results by Sinha (1989) and Nanthikesan and Shyam Sunder (1994)
are close to each other; that is, the differences are within the above-mentioned per-
centage limits.

In the case of an isotropic material, the Hooke law is commonly expressed by the
equation

σi j = λεkkδi j + 2Gεi j (i, j, k = 1, 2, 3), (3.4)
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in which λ denotes the first Lamé constant (G is the second one), and δi j is the
Kronecker symbol. An alternative form of the isotropic Hooke’s law, traditionally
used by engineers, is

σi j = E

1 + ν

[
εi j + ν

1 − 2ν
δi jεkk

]
, (3.5)

where ν stands for Poisson’s ratio. In terms of the Young and shear moduli, the Lamé
coefficient λ and the Poisson ratio are given by

λ = G(E − 2G)

3G − E
, ν = E

2G
− 1. (3.6)

Typical values of the Poisson ratio for isotropic polycrystalline ice are slightly above
0.30. For instance, the values of E and G given in (3.2) yield ν = 0.31 for ice at a
temperature of −10 ◦C. The Poisson ratio is little sensitive to ice temperature. Sinha
(1989) proposed the following approximation of the dependence of ν on temperature:

ν(T ) = 0.308 + 7 × 10−5(Tm − T ). (3.7)

As indicated by Hutter (1983), in typical sea ice problems the above temperature
dependence can be ignored, and the Poisson ratio can be treated as a temperature-
independent quantity.

The values of elastic constants given above apply to pure (bubble-free) freshwater
ice. The physical properties of sea ice differ considerably from those of freshwater
ice, mainly due to the brine and salt inclusions in the ice sheet structure, making
such an ice weaker (Schwarz and Weeks 1977). As there is a great variety of sea ice
structures encountered in natural conditions, it is difficult, and practically impossible,
to come out with the values of physical parameters that would describe all possible
cases. Instead, if such a need arises, the required parameters are measured in situ. In
general, the elastic modulus of sea ice can be determined by measuring the velocity
of sound waves propagating in the ice sheet, or by measuring flexural waves in ice.
As the delayed elasticity effects in sea ice are much more pronounced than in pure
ice (Timco and Weeks 2010), the values of elastic parameters measured for sea ice
in in situ conditions are not correct. For this reason, the term effective modulus, or
strain modulus, is used. As might be expected, the effective modulus is always
smaller than the elastic (Young’s) modulus. Weeks (2010) reported the values of the
effective modulus ranging from 1.7 to 5.7 GPa when determined by flexural waves,
and ranging from 1.7 to 9.1 GPa when measured by body-wave velocities. This
shows how much the elastic parameters can differ between various types of sea ice.

The above considerable differences in the values of the effective modulus are, to a
large extent, due to the differences in the values of ice porosity. The pores within the
sea ice cover are filledwith brine liquid. The latter exists in a complex thermodynamic
equilibrium with the surrounding material, and the volume of the brine changes in
time depending on the salinity of ice (the content of the salt inclusions trapped in the
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ice) and temperature. According to Nakawo and Sinha (1981), the salinity of first-
year sea ice decreases at a typical rate of 0.5 ppt per month, so the ice becomes less
saline with its age. Given the current ice salinity, the gross volume of brine inclusions
in the bulk of ice can be evaluated by the empirical formula (Sanderson 1988):

φb = ns(0.00053 − 0.0492/Tc), (3.8)

holding for temperatures ranging from−23 to−0.5 ◦C. In (3.8),φb denotes a fraction
of brine liquid per unit volume of ice, ns is the ice salinity expressed in ppt, and Tc

is temperature given in centigrade degrees. For example, the ice of salinity 10 ppt
(a typical initial salinity in the upper layer of first-year ice) has a brine content of
about 0.25 (that is, 25%) at a temperature of −2 ◦C, and about 0.05 (5%) at −10 ◦C.

The value of the elastic modulus decreases very rapidly with increasing brine
contentφb. For smaller values ofφb, not exceeding∼ 0.15, it was established that the
effective modulus E decreases linearly with φb; for larger values of φb the process of
the degradation of the stiffness of ice becomes slower, so that E → 0 asφb → 0. This
reduction in the effective modulus can be quantified by the following approximate
formulae derived by Hutter (1975, 1983) as a fit to empirical results:

E

E0
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 5φb, for 0 ≤ φb < 0.15;
47 · (0.15 − φb)

3 − 46 · (0.15 − φb)
2+

+0.5 · (0.15 − φb) + 0.25, for 0.15 ≤ φb < 0.4;
0.06 · (1 − φb), for 0.4 ≤ φb ≤ 1;

(3.9)

where E0 is the Young modulus of pure ice at a given temperature. It follows from
(3.9) that, for example, a 10% brine content in sea ice leads to a 50% reduction in
the value of its elastic modulus.

3.3.2 Creep Behaviour

At relatively low stress levels, below 0.1 MPa, when loading is applied in a quasi-
static manner and the time scales involved are short enough to prevent excessive
irreversible creep, polycrystalline ice can be regarded to a good approximation as a
linearly viscoelasticmaterial. Such a simplification seems to describe reasonablywell
the behaviour of floating lake and sea ice sheets, and has been employed in a number
of engineering applications (Sjölind 1985; Sanderson 1988; Morland 1996).

In principle, two general methods (Flügge 1967; Findley et al. 1976) can be
followed to describe the viscoelastic behaviour of ice. The first, simpler method,
consists in representing the material by a set of elastic springs and viscous dashpots
that are connected in parallel and/or in series. For such an idealized mechanical
system, constitutive differential equations relating stress, strain, and their time rates
are formulated and subsequently solved in order to obtain a creep or relaxation
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Fig. 3.10 Burgers
viscoelastic model for
polycrystalline ice rheology

function for the material considered. An example of such a model which has found
application in ice mechanics, is the Burgers model, also known as the four-parameter
fluid model, presented in Fig. 3.10. The model consists of a series combination
of two simpler rheological units, representing the Kelvin-Voigt solid and Maxwell
fluid. Despite its apparent limitations, Burgers’ model is capable of capturing quite
satisfactorily the three basic modes of the ice behaviour, namely, the purely elastic,
delayed-elastic and secondary creep responses.

The general differential equationwhich relates one-dimensional stressσ and strain
ε, together with their rates, in the Burgers model is given by

μ2

E1
σ̈ +

(
1 + E2

E1
+ μ2

μ1

)
σ̇ + E2

μ1
σ = μ1ε̈ + E2ε̇, (3.10)

where E1 and E2 are the elastic spring constants, μ1 and μ2 are viscous dashpot
parameters, and the superposed dots denote time derivatives. When a stress of con-
stant magnitude is suddenly applied to a system at time t = 0 and maintained there-
after, then a time-dependent strain ε(t) develops in viscoelastic material. This strain
is obtained by solving (3.10) and is expressed in the form:

ε(t) = σ

E1
+ σ

μ2

[
1 − exp

(
− E2

μ2
t

)]
+ σ

μ1
t. (3.11)

It is easy to see that the above strain consists of three components, that is,

ε = εe + εd(t) + εv(t), (3.12)

with εe, εd and εv representing, in turn, the instantaneous elastic response, the delayed
elastic strain (primary creep), and the secondary creep accumulated strain. By cor-
relating the above solution with experimental data in order to determine the material
parameters E1 and E2 (corresponding to the ice elastic moduli), and μ1 and μ2 (cor-
responding to the ice viscosities), one can attempt to model the real viscoelastic
behaviour of polycrystalline ice. It appears that the material behaviour predicted
by the four-element fluid model is unable to reproduce all the features of creep
curves presented in Figs. 3.7 and 3.8. Therefore, more elaborate spring-and-dashpot
rheological models have been proposed (Hutter 1983) and some, though not fully
satisfactory, improvements have been achieved.
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The method in which the viscoelastic behaviour of a material is approximated
by the behaviour of a system of springs and dashpots, has, however, two serious
disadvantages. First of all, the models of this type are essentially one-dimensional,
and their extension to three dimensions by employing simple methods (for instance,
by replacing one-dimensional stresses and strains entering the model equations by
relevant tensor variables) is, in general, very difficult and not always possible. The
second disadvantage of the spring-and-dashpot models is due to the fact that the
relaxation functions that originate from their application have very specific forms,
restricting their use to a relatively narrowclass ofmaterials. For these reasons, another
approach is usually preferred, inwhich constitutive relationswhich connect stress and
strainmeasures are expressed bymeans of hereditary integrals. Suchmethods usually
result in the necessity of solving integral equations of the Volterra type, which proves
to be mathematically more difficult than it is in the case of the first, more traditional
approach. Despite this additional effort, however, the second method offers greater
generality and flexibility when it comes to determining the creep and relaxation
functions describing the viscoelastic behaviour of a material. General aspects of this
method are discussed in detail in the book by Hutter (1983), and examples of its
application can be found in the papers by Spring and Morland (1983) and Morland
(1996).

At large stress levels and for slow processes occurring over long time scales, such
as the flow of polar glaciers, the behaviour of polycrystalline ice behaviour is by far
too complex to be analysed in the framework of the linear theory of viscoelasticity, as
has been evidenced by the results of numerous creep tests conducted, among others,
by Glen (1955), Mellor and Testa (1969a), Goodman et al. (1981), Mellor and Cole
(1982), and Budd and Jacka (1989). These results clearly show that polycrystalline
ice is a rate-dependent material, for which the minimum strain-rate which is attained
during secondary creep (see Fig. 3.8) is a function of applied stress, thus implying
that the constitutive response is non-linear.

Commonly, it is assumed in theoretical glaciology that the non-linear behaviour
of polycrystalline ice during its secondary creep is governed by a power law, by
analogy to many other materials, including metals. Accordingly, for the simple one-
dimensional case, the creep of ice is described by the law expressed in the form

D = (σ/V )n, (3.13)

where D and σ are axial strain-rate and stress, respectively, V is a constant, and n
is the power law exponent. The parameter V , representing the creep resistance of
the material, is a temperature-dependent parameter. Usually, the latter is assumed to
obey an Arrhenius-type relation given by

V = V0 exp(Qa/n RT ), (3.14)

where V0 is a temperature-independent constant, Qa is the activation energy for
creep, which at T = 263 K is equal to 6.7 × 104 Jmol−1 (Sinha 1983), R =
8.314 J K−1 mol−1 is the universal gas constant and T is absolute temperature.
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Relation (3.13) is known in engineering as the Norton-Hoff creep power law. It
was introduced to the field of theoretical glaciology by Glen (1955) who, for uniaxial
deformation, formulated it in a slightly different way, namely

D = Uσn. (3.15)

In view of Eqs. (3.13) and (3.14), the coefficient U varies with temperature in accor-
dance with the relation

U = U0 exp(−Qa/RT ), (3.16)

whereU0 is a temperature-independent constant. A three-dimensional generalization
of Glen’s flow law (3.15) is usually expressed in tensorial form as

D = Cτ n−1
e S, (3.17)

where D is the strain-rate tensor, S is the deviatoric Cauchy stress tensor, and C
is a temperature-dependent material parameter. The coefficient τe is a stress tensor
invariant that describes the observed dependence of the material creep resistance
(ice viscosity) on a stress state in ice. Often, the second deviatoric stress invariant is
adopted to serve this purpose.

In his original formulation of the power law (3.15), Glen (1955) suggested a
value of n ∼ 3.5 as best agreeing with (then) available experimental data. Other
authors obtained values of n varying from 2 to 4 for stresses exceeding about 1 MPa.
Nowadays, a generally accepted value of the creep power law exponent is n = 3
(Sinha 1978a; Goodman et al. 1981; Weertman 1983; Duval et al. 1983; Budd and
Jacka 1989; Treverrow et al. 2012), valid for stresses ranging from about 0.2 MPa to
about 1.5 MPa. At lower stresses, however, which are more relevant to polar glaciers
in which typical deviatoric stress magnitudes are usually smaller than 0.1 MPa, both
laboratory and field measurements (Mellor and Testa 1969a; Doake andWolff 1985;
Lliboutry and Duval 1985; Alley 1992) give indications that the exponent n can have
a value below 2, and at yet smaller stress magnitudes n possibly approaches a value
close to 1. The latter creep regime corresponds to that ofHarper-Dorn creep observed
in many metals (Lliboutry and Duval 1985). Such nearly Newtonian viscous flow,
with n ∼ 1, may be a dominant material behaviour in the upper parts of the polar
ice sheets, though a definite conclusion, whether the most appropriate value of the
power law index at low stresses is 3, 1, or some value in between, still awaits more
experimental support than is available (Baral et al. 2001). A possible solution is
to derive a viscous creep flow law of a more complex form, in which strain-rates
are expressed in terms of polynomial functions of stress magnitudes/invariants. The
parameters of a flow equation could be determined by correlation with the observed
creep behaviour of ice, though one must be aware of significant inconsistencies
existing between various experimental data sets. Examples of the application of such
a method can be found in the papers by Lliboutry (1969), Colbeck and Evans (1973),
Smith and Morland (1981) and Morland (1993).
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The parameter C in Eq. (3.17) is often assumed to depend on temperature in the
very same way as U depends on it by relation (3.16), that is, exponentially in terms
of temperature T . However, Eqs. (3.14) and (3.16) are known to hold only in the case
of cold ice, being at temperatures well below the ice melting point Tm = 273.15 K
(that is, for temperatures, say, lower than T ∼ 260 K). At higher temperatures, which
are of considerable importance to natural ice masses, the experimental evidence
(Mellor and Testa 1969b; Mellor 1980) indicates that the Arrhenius-type law is
inappropriate; therefore, a different type of relationship is required. An example of
such a relationship, derived by correlation with experimental data of Mellor and
Testa, was proposed by Smith and Morland (1981). In its modified form (Morland
1993, 2001) it is expressed as

a(T̄ ) = 0.68 exp(12T̄ ) + 0.32 exp(3T̄ ), (3.18)

where the normalized temperature T̄ is defined by

T̄ = (T − Tm)/�T , �T = 20 K. (3.19)

The above function, with the properties a(Tm) = 1 and a(T ) < 1 for T < Tm , is
valid for temperatures up to 60 K below the melting point Tm . The rate factor a(T )

scales, at a given stress, the time-dependent ice viscosity μ(T ) by the relation

μ(T ) = μ(Tm)/a(T ), (3.20)

where μ(Tm) denotes the near-melting point ice viscosity. Referring to Eq. (3.17),
the ice viscosity is inversely proportional to the factor Cτ n−1

e .
The process of non-linear primary (transient) creep is a more complex defor-

mation mechanism than secondary creep, and for this reason is more difficult to
be investigated experimentally and described analytically. In principle, two distinct
approaches have been pursued to construct constitutive equations for primary creep.
The first approach is purely phenomenological, and consists in relating only macro-
scopically observable variables, such as stress, strain, strain-rate, temperature and
time, without considering any quantities that describe the internal state and structure
of the material. This method has been applied, among others, by Sinha (1978a, b,
1979, 1983) and Gold and Sinha (1980). An example is a one-dimensional consti-
tutive relation describing the evolution of strain in polycrystalline ice in terms of
stress, temperature and grain size, formulated by Sinha (1979, 1983). This relation
is expressed as

ε = c1
(d0

d

)( σ

E

) {
1 − exp

[−(aT t)1/n
]}

, (3.21)

where ε is a uniaxial strain, σ denotes stress which is applied to previously unde-
formed ice at time t = 0 and then held constant, c1 = 9 × 10−3 is an empirically
determined constant, d is a mean ice grain diameter, d0 is a unit of the grain size,
and E is the Young modulus. The coefficient aT entering (3.21) accounts for the
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temperature-dependence of the primary creep process in a manner described by the
Arrhenius law (3.16), with U and U0 being replaced, respectively, by aT and aT0 ,
where the latter is a temperature-independent constant of the value 2.5 × 10−4 s−1.
Subsequently, Zhan et al. (1994) have extended the law (3.21) by formulating a
three-dimensional constitutive model for columnar ice, expressed in the following
rate form:

Di j = aT

n

[(
c1d1

d

)n( σ̄

E ε̄

)n−1 1

2E

∂σ̄2

∂σi j
− εi j

]
(i, j = 1, 2, 3), (3.22)

in which Di j and εi j (i, j = 1, 2, 3) are, respectively, strain-rate and delayed elastic
strain tensor components, and σ̄ and ε̄ are some functions of stress and strain tensor
components, respectively, and of four model parameters describing the anisotropy
of ice in primary creep.

Another, more general method to formulate constitutive laws consists in consider-
ing, besides themacroscopically observable quantities, also variables which describe
the internal state of the material. In the context of modelling non-linear creep of ice,
this method has been applied by Le Gac and Duval (1980), Ashby and Duval (1985)
and Shyam Sunder and Wu (1989a, b, 1990b). The constitutive equations derived
are all based on experimental results obtained by Mellor and Cole (1983), indicating
that the strain-rate at the onset of primary creep, when measured at different stress
levels, is approximately equal to a constant multiple of the corresponding minimum
strain-rate occurring during secondary creep. This has prompted an idea that the
deformation-rate in non-linear primary creep, by analogy to secondary creep, is also
governed by a power law similar in form to (3.13). Thus, the strain-rate in ice, D, is
given by

D = (σ∗/V ∗)n, (3.23)

in which V ∗, the temperature dependence of which is described by the Arrhenius-
type relation (3.14), is the creep resistance at the onset of primary creep, before the
material starts to harden (see the creep curve in Fig. 3.8). The meaning of the stress
σ∗ in the power law (3.23), however, differs from that in the corresponding equation
(3.13) for secondary creep. While in the latter case the stress σ does not change in
time (provided that loading is constant in time), in the case of primary creep the stress
σ∗ evolves (also under constant external loading). In this way the material hardening
mechanism is incorporated in the constitutive model. Two kinds of hardening can be
accounted for in the model: kinematic and isotropic. In order to describe these two
types of hardening, two internal state variables are introduced. One is the elastic and
fully recoverable back stress (or rest stress), S1, the evolution of which describes
kinematic hardening of the material, whereas the other state variable, S2, describes
the evolution of isotropic hardening.
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Two distinct ways of expressing the stress σ∗ have been pursued. In the first
method, due to Le Gac and Duval (1980), σ∗ is defined by

σ∗ = |σ − S1| − S2, (3.24)

where σ∗ is termed the effective stress, and S2 the isotropic-hardening stress. The
evolution of internal stresses S1 and S2 is described by the relations

Ṡ1 = a1D − b1Sn
1 , Ṡ2 = a2|D| − b2Sn

2 , (3.25)

where a1 and a2 are strain-hardening functions, and b1 and b2 are recovery coeffi-
cients, all to be determined by fitting to experimental data.

Themodel proposed by LeGac and Duval (1980) has subsequently beenmodified
by Ashby and Duval (1985). Their approach is based on the assumption that two
different deformation mechanisms operate as polycrystalline ice aggregate creeps.
One of them is a soft system and corresponds to the slip on crystal basal planes, and
the other is a hard system, associated with the slip on non-basal planes. The authors
have developed a spring-and-dashpot model consisting of two Maxwell rheological
units (representing the soft and the hard systems, respectively), connected in parallel.
The model allows a clear physical interpretation of the kinematic hardening process;
unfortunately, the isotropic hardening has not been considered.

In the second method, developed by Shyam Sunder and Wu (1989a), the stress
σ∗ in the creep power law (3.23) is defined in an alternative form as

σ∗ = (σ − S1)/S2, (3.26)

where σ∗ is called the reduced stress, and the scalar-valued dimensionless parameter
S2, describing isotropic hardening, is called the drag stress. The evolution of the
internal state variables is given by

Ṡ1 = c1E D, Ṡ2 = c2E D, (3.27)

where the parameters c1 and c2 are temperature-independent material parameters.
Altogether, the model includes six material parameters: n, c1, c2, E , V ∗

0 and an initial
value of the drag stress S2. The uniaxial constitutive model by Shyam Sunder andWu
(1989a) has been generalized to three dimensions by the same authors in their paper
(1989b), in which polycrystalline ice is treated as an anisotropic material displaying
orthotropic symmetries. The state equations have been derived from a Helmholtz
free energy potential, and the evolution relations for the transient strain have been
derived from a set of independent potential functions accounting for the dissipation
processes occurring in the material. Besides the six material constants in the one-
dimensional model, the extended version requires five more parameters needed to
describe the orthotropic structure of ice during its creep deformation.

The above constitutive theories have been generalized in another paper by
Shyam Sunder and Wu (1990b), in which a number of criteria have been formulated
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that should be used to assess primary creep models for polycrystalline ice. These cri-
teria address such important questions as: (1) the correspondence between the con-
stant stress and constant strain-rate creep responses, conjectured by Mellor and Cole
(1982), (2) the kinematic consistency between strain, strain-rate and time, and (3) the
consistency of the evolution of the internal variables with underlying microstructural
mechanisms.

Essentially, the results presented thus far in this section are relevant to the creep
processes in bubble-free freshwater ice, typical of land-based ice, and therefore any
direct extension of these results to sea ice must be carried out with caution. This
is, first of all, because of a great variety of possible types of internal structures and
features of sea ice, as already discussed in this work, which makes generalization
and systematization of results difficult. Here, we return once more to the effect of
brine inclusions in floating ice. These inclusions not only affect the elastic properties
of ice, see Eq. (3.9) on p. 36, but also have an influence on its creep behaviour. This
is due to the phenomenon of local stress concentration occurring near the boundaries
of brine pockets and channels in ice. The result is that the actual stresses sustained
by the solid sections of an ice cover are much larger than the gross stresses applied to
the bulk of ice. Due to these higher stresses, the creep rates in such weakened ice can
substantially exceed those in pure ice. One can devise various methods to account
for increased creep rates in porous sea ice. Certainly, one of the simplest possible
approaches, well suited to engineering applications, is that proposed by Weeks and
Assur (1967). In this approach, a stress correction factor, nc ≥ 1, is introduced, by
means of which bulk stresses in ice are scaled to estimate the magnitudes of local
stresses. On the basis of some geometrical consideration, Weeks and Assur (1967)
have showed that in the case of horizontally loaded columnar ice with vertically
arranged brine channels, the correction factor is given by

nc = 1

1 − √
φb/φ0

, (3.28)

whereas for granular ice containing spherical brine pockets this factor is expressed
by

nc = 1

1 − φb/φ0
. (3.29)

In the latter two formulae, φb is the brine volume that can be evaluated, for given ice
salinity and temperature, from Eq. (3.8), and φ0 is a normalizing parameter that can
be determined by experiment. By comparing the results of uniaxial compression tests
conducted on pure and sea ice, it has been established that the best approximations
are φ0 = 0.16 for columnar ice, and φ0 = 0.10 for granular ice (Sanderson 1988).

Tertiary creep, which is a much more complex physical process than primary and
secondary creep mechanisms discussed in this section, is not addressed at this point.
There are a number of reasons for not doing this. Firstly, tertiary creep, which is the
main mode of ice deformation in polar glaciers, occurs on time scales that are by a
few orders of magnitude longer than the time scales on which primary and secondary
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creep strains typically develop. Secondly, several recrystallizationmechanisms oper-
ate during this type of creep, giving rise to significant changes in the microstructure
of the material. And thirdly, due to the evolution of its internal structure, polycrys-
talline ice becomes increasingly anisotropic during tertiary creep. Thesemechanisms
are difficult to be investigated experimentally and treated formally, and also are very
different from those acting during primary and secondary creeps. Therefore, their
detailed discussion is deferred until Chaps. 6 and 7 which are entirely devoted to the
description of the phenomenon of creep induced anisotropy in polar ice.

3.4 Brittle Behaviour of Polycrystalline Ice

Contrary to the ductile behaviour of polycrystalline ice, which is macroscopically
scale-independent so that the same laws apply whatever the size of an ice sample, the
fracture mechanism exhibits a pronounced scale effect. The stress under which a par-
ticular sample of ice fails in a brittle manner depends on its geometrical dimensions,
as well as on the size, shape and the distribution of flaws (cracks) in the material
(Sanderson 1988). The scale-dependence of the brittle behaviour of ice can be illus-
trated schematically by the plot in Fig. 3.11, summarizing the results obtained both
in the laboratory and during field observations of sea ice. This plot, adapted from
Sanderson (1988), is known as a pressure–area curve, and shows an average com-
pressive stress in ice at its failure as a function of the area on which the stress acts. It
is seen in the figure, which covers a very wide range of scales, that the typical failure
stresses measured in small-scale laboratory tests are in the range of 10–20 MPa,
while on the large scales in the field these stresses can be much lower than 1 MPa.

Fig. 3.11 Pressure–area curve for sea ice, showing the dependence of failure stress on the area on
which the stress is applied. Based on data from Sanderson (1988), Fig. 5.36
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There are a number of processes underlying the above scale effect, so clearly
displayed by the pressure-area curve in Fig. 3.11. It appears that, apart from the
phenomena of imperfect contact between different parts of an ice body (for instance,
between floes in a sea ice pack) causing non-simultaneous fracture of the material,
the major factor are the statistical features of the brittle fracture mechanism. Since
this process is essentially associated with the nucleation and propagation of cracks,
and is controlled by the largest of them, in particular under tensile stresses, the
probability that larger samples of ice contain larger flaws (and therefore are weaker)
is greater than in the case of smaller samples.

There are a variety of reasons for which polycrystalline ice begins to display brit-
tle behaviour and crack formation instead of continuum creep. Generally, ice starts
to fail when either stress, strain, or strain-rate exceeds certain critical magnitude.
Typical critical levels for the stress are about 1 MPa in tension and about 5 MPa in
compression, for the (elastic) strain the limit value is about 0.01 (1%), and for the
strain-rate it is about 10−4 to 10−3 s−1 (Barnes et al. 1971; Hawkes andMellor 1972;
Sanderson 1988). Two main mechanisms that control the brittle behaviour of ice
are: crack nucleation (formation) and crack propagation. These are two quite distinct
processes, and it occurs that the fracture of ice may be either nucleation-controlled
or propagation-controlled. The nucleation-controlled fracture is characteristic of
coarse-grained ice and arises in situations in which an applied stress induces the
formation of cracks that are large enough to propagate immediately after they have
appeared. In the case of fine-grained ice a typical situation is different. The develop-
ment of first microcracks usually leads to increased ductility of the material, but does
not lead to its fracture, so ice still behaves in a continuum manner. It is only after
the stress has been further increased to make the microcracks merge and propagate
that the ice starts to fail, and the process becomes propagation-controlled. Which of
these two mechanisms actually controls the brittle fracture of ice depends largely on
the size of cracks developed in the material, and this in turn depends on the size of
ice grains.

The processes of ice failure due to crack nucleation and propagation develop in
very different ways under tensile and compressive stresses. Under tension, the fail-
ure mechanism is governed by a single crack alone, the largest in a specimen, and
typically the process occurs in a very unstable manner. Under compression, the pres-
ence of cracks in the material does not necessarily lead to its fracture. Only after
new cracks have develop, or existing ones have coalesced and started to expand,
the material starts to deteriorate and ultimately fails. For these reasons, the brittle
compressive fracture is, in general, a more complicated process, and thus more diffi-
cult to investigate and describe formally, than the fracture due to tensile stresses. In
what follows these two, tensile and compressive, fracture mechanisms are described.
The emphasis is on sea ice engineering applications, therefore only the most basic
mechanisms and equations are discussed. A more thorough and rigourous treatment
requires the knowledge of advanced tools of fracture mechanics (Atkinson 1987),
which is beyond the scope of this book. As noted by Timco and Weeks (2010), the
use of the rigourous fracture mechanics methods in sea ice problems is still rare,
though some progress in this area has been observed in recent years.
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3.4.1 Tensile Fracture

Whenan initially crack-free sample of polycrystalline ice is subjected to tensile stress,
its initial stages of deformation, as described earlier (see Fig. 3.7 on p. 30), are due to
three ductile behaviour mechanisms, namely the instantaneous elastic response εe,
the delayed elastic strain εd , and the viscous creep strain εv . It is a generally accepted
view (Sanderson 1988) that microcracks start to nucleate after some critical strain
has developed in thematerial. Experimental evidence (Schulson et al. 1984) indicates
that in the range of low tomoderate strain-rates the critical strain is equal to the elastic
delayed strain εd (which can be evaluated by applying formulae given in Sect. 3.3.2),
whereas at high strain-rates it appears that the total strain ε, as defined by Eq. (3.12),
is a more appropriate quantity to use as the crack nucleation criterion. For columnar
S2 ice of a typical grain diameter d = 5 mm, a generally approved value of the elastic
delayed strain εd at which the nucleation process starts is 10−4 (0.01%), irrespective
of the type of loading. For instance, by applying relation (3.21), with the elastic
modulus determined by (3.3) and assuming the ice temperature to be T = 263 K
(Tc = −10 ◦C), it can be found that the maximum stress at which microcracks will
never develop is equal to about 0.5 MPa. If, however, the stress exceeds this limit
value, then cracks will eventually nucleate, provided that the sample is left under
loading for sufficiently long time. For example, for the stress level of 1 MPa the time
needed for cracks to appear is about 1600 s, whereas for the tensile stress magnitude
of 2 MPa this time decreases to about 110 s. For comparison, in the case of more
finely-grained ice, with a mean diameter d = 1 mm, the threshold stress magnitude
below which no cracks are nucleated is about 1.0–1.2 MPa, while the propagation
of cracks starts at the stress levels exceeding about 1.2–2.0 MPa (Sanderson 1988).

The problem of crack formation and propagation under tensile stresses has been
investigated experimentally by Schulson et al. (1984), who tested isotropic polycrys-
talline ice at temperatures ranging from −20 to −5 ◦C. The authors have concluded
that the nucleation process gives rise to the formation of cracks of lengths which
are of the order of an average grain diameter, and it is the largest, dominant flaw
developed in the material that ultimately leads to the fracture of a specimen. A peak
tensile stress at which the fracture occurs has been measured as a function of grain
size, and it has turned out that the stress needed for fracture to occur, whether it is
driven by nucleation or propagation of cracks, obeys relations which are very similar
in form to each other. Accordingly, the dependence for the nucleation-controlled
failure is expressed by the formula (Schulson et al. 1984; Schulson 2001):

σN = σ0 + KN d−1/2, (3.30)

which relates tensile stress, σN , needed to nucleate cracks, to the grain diameter d
in terms of two empirically determined material constants, σ0 and KN . Both σ0 (in
MPa) and KN (in MPa m1/2) are temperature-dependent, and Schulson et al. (1984)
give them, respectively, the following number values: 0.70 and 0.016 at−20 ◦C, 0.60
and 0.020 at−10 ◦C, and 0.55 and 0.020 at−5 ◦C. The tensile stress needed to induce
the crack propagation is, in turn, described by the relation
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σP = K P d−1/2, (3.31)

which expresses stress σP , needed to propagate a crack, in terms of the grain size d
by means of only one empirical constant, K P . The value of the latter does not vary
with temperature, and is equal to 0.044 MPa m1/2 (Schulson et al. 1984).

Equations (3.30) and (3.31) determine a grain diameter at which the stresses σN

and σP are equal; that is, the stresses required to nucleate cracks and propagate them
are in equilibrium. This particular value of grain diameter, denoted by dc, is given by

dc =
(

K P − KN

σ0

)2

. (3.32)

Since the constants KN and σ0 are temperature-dependent, one could expect that
also dc has this property. Simple calculations with the values of material parameters
specified in the text after Eq. (3.30) show, however, that Eq. (3.32) yields nearly
the same values of dc for the three temperatures considered: dc = 1.6 mm at Tc =
−20 ◦C, dc = 1.6 mm at Tc = −10 ◦C, anddc = 1.9 mm at Tc = −5 ◦C.This feature
is illustrated in Fig. 3.12, showing the variation of σN and σP as a function of d.
The diameter dc defines a critical grain size, at which the stress required to nucleate
cracks equals the stress needed to propagate them. Following Schulson et al. (1984),
the diameter dc = 1.6 mm is adopted as a universal value. The plots in Fig. 3.12
indicate that for the grain size d > dc the fracture process is controlled by nucleation,
while for d < dc the fracture is controlled by crack propagation. In other words, the
critical grain size dc marks a transition from a brittle (nucleation-controlled) to a less-
brittle (propagation-controlled) behaviour of ice. Since both sea ice and polar glacier

Fig. 3.12 Tensile fracture stresses needed for nucleation (σN ) and propagation (σP ) of cracks as a
function of mean grain diameter d
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ice are usually composed of grains exceeding 1.6 mm in diameter, this means that
once cracks have developed in ice, they propagate immediately. There are practical
consequences of this situation. Namely, if a sample of ice is initially crack-free, then
its tensile fracture strength equals the stress needed to nucleate cracks. If, however,
there are already flaws in ice, and their length exceeds a few grain diameters, then the
ice failure is governed by crack propagation (as requiring, for d > 1.6 mm, smaller
stress than that needed for crack nucleation).

As can be seen from Fig. 3.12, the typical tensile fracture strength of solid sea
ice (without brine or air pockets), for mean grain diameters d > 1 mm, is equal to
about 1 MPa, and the latter value is commonly used in engineering applications as
the standard tensile strength parameter. In some problems of practical importance,
though, in which a sea ice sheet is bent, for instance during ice-breaking, flexural
strength seems to be a more appropriate measure of the brittle material capability of
sustaining tensile stresses. It turns out that the flexural strength of ice is typically by a
factor of about 1.7 larger than its tensile strength (Timco and O’Brien 1994). This is
because the largest cracks which govern the fracture mechanism are generally inside
an ice cover, not near its surfaces (Schulson andDuval 2009). The tensile and flexural
strength properties of sea ice are strongly dependent on the porosity of ice (caused
by the brine inclusions in its structure). Timco and O’Brien (1994) proposed, on the
basis of experimental measurements, the following approximate formula describing
the reduction of the flexural strength σ f with increasing brine content φb:

σ f = 1.76 exp
(
−5.88

√
φb

)
[MPa]. (3.33)

This relation predicts, for the brine content φb = 0.05 (a typical value for first-year
sea ice), the value of σ f = 0.47 MPa; this means a significant 73% reduction in the
flexural strength of ice. One can expect a very similar reduction in the axial tensile
strength of sea ice with its increasing porosity as well.

In order to evaluate the tensile strength of the material more accurately, one has
to examine what is the stress magnitude that makes an existing crack propagate. The
basic criterion is provided by the linear elastic fracture mechanics (LEFM), see, for
example, Atkinson (1987). This criterion states that a sharp crack of length 2a will
propagate (or ‘open’) in a material under a far-field uniform tensile stress σ (see
Fig. 3.13) if the following inequality is satisfied:

σ >
KI C√
πa

. (3.34)

The parameter KI C in (3.34) is called the fracture toughness of the material (more
precisely, it is ‘mode-I fracture toughness’, which means that the crack surfaces are
opening in the direction perpendicular to the crack faces, as opposed to the modes
of crack sliding and crack tearing). The parameter KI C is a material property and
can be easily measured for elastic engineering materials (Sanderson 1988). In the
case of polycrystalline ice, however, it is considerably more difficult to experimen-
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Fig. 3.13 Simple
configuration for propagation
of a crack of length 2a under
uniform tensile stress σ

tally determine KI C because of the creeping properties of the material. In general,
the measurements should be carried out at sufficiently high strain-rates, otherwise
improper values (greater than actual) can be obtained.

The fracture toughness of pure ice is approximately 0.115 MPa m1/2. Practically,
it can be treated as a temperature-independent parameter (it increases very slightly
with decreasing temperature of ice). The fracture toughness decreaseswith increasing
grain size. This can be expressed by the relation (Schulson and Duval 2009)

KI C = K I O + φd d−1/2, (3.35)

where K I O = 0.58 MPa m1/2 and φd = 0.042 MPa mm1/2. This relation gives the
values KI C=0.10 MPa m1/2 for the grain size d=1 mm and KI C = 0.071 MPa m1/2

for d = 10 mm.Obviously, the fracture toughness decreases with ice porosity; there-
fore, the value of this parameter for sea ice is smaller than for pure ice. As a first
approximation, one can assume that the toughness decreases linearly with increas-
ing porosity (Rist et al. 2002). For simplicity, though, one can adopt the value of
KI C = 0.1 MPa m1/2 (Sanderson 1988) as adequate for typical sea ice applications.

3.4.2 Compressive Fracture

As already noted, the process of ice failure due to crack nucleation and propagation
under compressive loading is a more complex physical phenomenon than that under
tensile stress (Schulson and Duval 2009). In compression, cracks may develop not
only due to the accumulation of dislocations at grain boundaries, which is the case
under tensile loading as well, but also due to their nucleation across ice crystals.
Furthermore, the mechanism directly leading to the failure is associated now with
the linkage of a large number of cracks and the formation and evolution of so-called
wing and comb cracks (Schulson 2001), whereas in tension the final failure may be
caused by a single, sufficiently large crack that propagates through the material.

Due to the above-mentioned points, the formal treatment of compressive failure
is difficult, and in order to be done properly, application of elaborate theories of frac-
ture mechanics would be expedient. However, following a simplified engineering
approach, a nucleation criterion similar to that used for tensile fracture is applied.
Hence, it is assumed that nucleation of cracks under compression begins when the
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lateral tensile strain resulting from the Poisson expansion reaches the same magni-
tude as the corresponding strain occurring during the tensile crack formation. Since
under uniaxial compressive stress the lateral expansion of the material is the axial
compression times the Poisson ratio ν, and, further, the elastic response of ice is
roughly independent of direction, one can deduce that the axial compressive stress
has to be 1/ν times larger inmagnitude than the critical tensile stress necessary for the
tensile crack nucleation. Accordingly, by analogy to relation (3.30), the nucleation
criterion for cracks to develop under compressive stress can be expressed by

σc
N = −1

ν

(
σ0 + KN d−1/2

)
, (3.36)

where σc
N (negative in compression) is the stress at which cracks nucleate, and the

remaining constants have already been defined for Eq. (3.30). Since ν ∼ 1/3, it
means that the stress needed to produce cracks under compression is about three
times as large as the corresponding stress for tension. As it follows from (3.36), the
compressive fracture of coarsely-grained ice (d � 5 mm) occurs at the stress level
of about 3 MPa.

Once the process of crack nucleation under compression has started, a sample
of ice contains a wide variety of cracks of different sizes and orientations. Experi-
mental investigations have shown (Sanderson 1988) that: (1) the average length of
nucleated cracks, 2a, is roughly proportional to the grain diameter d, with an approx-
imate relation 2a ∼ 0.65d; (2) the crack orientations are clustered around the axis
of compression, so that about 90% of cracks are aligned within the angle of 45◦ to
the direction of the principal compressive stress axis; (3) for coarsely-grained ice
(d � 5 mm) a mean crack density is about one crack per grain.

At this stage (that is, after the crack nucleation), ice still remains in a stable
state, and its brittle failure can occur only after the existing cracks merge with one
another, which can be accomplished by increasing the compressive stress. At some
critical loading level wing cracks develop in the material and the process of crack
propagation starts (see Fig. 3.14). As the compressive stress is applied, both sides of

Fig. 3.14 Wing cracks of length l forming at the tips of an existing crack of length 2a
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the crack slide relative to each other due shear stresses and, as a result, tensile stress
regions develop around the tips of the cracks. These tensile zones give rise to wing
cracks that initially propagate roughly perpendicularly to the parent crack ends, but
subsequently they tend to align along the principal axis of compression. The length
of the wing crack, which usually develops in a stable manner, is a function of the
current stress conditions and the mechanical properties of ice. This problem has been
analysed in two dimensions by Ashby and Hallam (1986); the details of the analysis
are omitted here and only the final results of this work are presented.

Assume that an initial crack of length 2a is oriented at some angle to the direction
of the principal compressive stress σ11, (Fig. 3.14). It is possible then to relate the
length l of the wing crack by the formula

K I C = − σ11
√

πa√
3 (1 + L)3/2

[
Lc + (1 + L)−1/2

] ×

×
[
1 − ξ − λ(1 + ξ) − √

3 Lξ/c
]
.

(3.37)

In this formula, L = l/a, c is a coefficient, ξ = −σ33/σ11 is the ratio of confining
lateral stress to compressive stress, andλ is the coefficient of friction across the crack.
As an illustration, let consider unconfined uniaxial compression conditions, that is,
assume that σ33 = 0, and hence ξ = 0. In this simplified case, Eq. (3.37) defines the
compressive failure stress σ11 = σc

P as follows:

σc
P = −

√
3 K I C (1 + L)3/2

(1 − λ)
√

πa

[
Lc + (1 + L)−1/2

]−1
. (3.38)

The latter equation relates the compressive stress to the length of wing cracks. What
is, however, a mean length of wing cracks when ice fails due to crack propagation,
still remains an open question, and a number of approaches are possible to answer
it (Ashby and Hallam 1986). Here it is supposed that the process of linkage of wing
cracks, resulting in a catastrophic reduction in the ice strength, occurs when the
length l of cracks is equal to half of the grain diameter d. This is consistent with
the empirical data indicating that immediately after the nucleation of cracks, their
density is approximately one crack per grain. Thus, one can expect that if d = 2l,
then the initially separated cracks coalesce (since they all tend to align in the same
direction), and hence the fracture process starts. Now, recalling that the length of
newly nucleated cracks is given by the relation 2a = 0.65d, it follows that L =
l/a ∼ 1.53. By adopting the values c = 0.4 and λ = 0.3 (suggested by Sanderson
1988), we obtain from Eq. (3.38) an approximate expression for the compressive
fracture strength of ice:

σc
P ≈ −7.97 KI C d−1/2. (3.39)

Taking KI C = 0.115 MPa m1/2 as the value of ice fracture toughness, Eq. (3.39)
predicts, for ice of the mean grain size d = 5 mm, the compressive failure strength
of about 13 MPa. According to Sanderson (1988), this is a reasonable estimate,
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and for many engineering purposes the approximate formula (3.39) seems to be
adequate, in spite of a number of uncertainties and crude simplifications involved in
its derivation.

One should keep in mind that relation (3.39) holds for pure ice. In the case of sea
ice, the compressive fracture strength is obviously smaller because of the factors (ice
porosity and salinity) discussed earlier in this chapter. For instance, Schulson et al.
(2006) give the value of (5.0 ± 0.2) MPa at a temperature of−10 ◦C for S2 columnar
first-year Arctic ice, of grain size d = (3.9 ± 0.4) mm and salinity of 8 ppt. The
above magnitude of 5 MPa is often used in sea ice applications as the parameter
describing the strength of sea ice under horizontal compression.

As seen above, the theoretical analysis of ice fracture phenomena is compli-
cated even in the case of plane problems. Therefore, the extension of the analy-
sis to three dimensions proves a very challenging task. Nevertheless, a number of
three-dimensional constitutive models for ice failure mechanism have been already
developed. One of such general theories is due to Sjölind (1987), who treated ice
as an orthotropic viscoelastic brittle material. The model is based on an assump-
tion supported by observation that microcracks nucleate and grow in planes that are
perpendicular to the directions of positive principal stresses. For each possible crack
propagation direction, a so-called damage vector is defined, themagnitude ofwhich is
related to the average volume density of cracks. These damage vectors constitute a set
of internal state variables which describe the macroscopic behaviour of the material.
In order to derive evolution equations governing the growth-rates of the microcrack
fields, the principles of irreversible thermodynamics have been applied. The model
has been tested for uniaxial, compressive and tensile stress configurations, with the
material properties pertinent to S2 columnar ice. The model predictions obtained
numerically have been consistent with empirical data over a wide range of strain-
rates. However, it appears that due to its complexity, it is difficult to apply this theory
to realistic three-dimensional engineering problems.

In the fracture theories for ice, the mechanism of crack nucleation is usually
assumed to result entirely from dislocation pile-ups at grain boundaries. Cole (1988)
has proposed a theory based on the assumption that the elastic anisotropy of indi-
vidual ice crystals can also contribute to the process of crack formation. This has
been demonstrated by applying a model, in which the interaction of only two iso-
lated crystals has been considered. A drawback of Cole’s approach, apparently due
its simplicity, is that it predicts equal tensile and compressive stresses at which the
first cracks nucleate, which seems unrealistic. Shyam Sunder and Wu (1990a) have
significantly extended the theory of crack nucleation due to the elastic anisotropy of
ice grains, by applying a method developed by Eshelby (1957). The model results
have shown that the stress magnitude required to nucleate the first crack under uni-
axial compression is about 2.5 times as large as that under uniaxial tension, and the
magnitude of the stress needed to form a crack in compression is strongly dependent
on the orientation of crystals. The predicted range of the tensile nucleation stresses
as a function of grain size has agreed well with the experimental data of Schulson
et al. (1984).
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In another attempt, Nixon (1996) has formulated a constitutive theory which
describes ice failure due to the mechanism of unstable wing crack propagation. In
contrast to Ashby and Hallam (1986) and Sanderson (1988), the author has consid-
ered a possibility that the formation of new cracks, rather than the propagation of
wing cracks from those already developed, may result in the brittle fracture of ice.
The analytical relations derived by Nixon resemble those obtained by Ashby and
Hallam (1986); that is, they relate ice failure strength to grain diameter and a set
of parameters that can be measured in experiments. The author has compared the
predictions of his six different models with the available test data, and concluded that
the brittle compressive failure of ice cannot be described solely by means of wing
crack propagation, therefore other micro-mechanisms need to be accounted for as
well.

3.5 Thermal Properties of Ice

All the processes associatedwith the formation andmelting of ice on Earth are related
to the climate. Further, most of the physical (and, in particular, the mechanical)
properties of ice strongly depend on its temperature. Therefore, the phenomena of
phase changes (freezing of water and melting of ice), and the processes of heat
fluxes through ice and heat exchange between ice, water and air, are all of paramount
importance to ice mechanics.

The amount of energy due to the solar irradiance, incoming to a plane perpendic-
ular to the rays, and measured per unit area and unit time, is defined by the solar con-
stant. Its value, measured at the top of Earth’s atmosphere, is equal to 1361 Wm−2.
Due to the absorption of solar radiation by water vapour, ozone and carbon dioxide
in the atmosphere, its absorption and reflection by clouds, and its scattering back to
space by air, etc., only about 51% (Paterson 1994) of the total solar energy arriving
at the outer layers of the atmosphere reaches the surface of Earth.

Of the energy which ultimately arrives at the ocean or land (ice) top surface, one
part is absorbed by underlying medium and contributes to its heating, while the other
part is reflected back to the atmosphere. How much of the solar energy is reflected
at a given surface is defined by a dimensionless parameter known as albedo (or
whiteness), assuming the values from zero to unity. A value of zero means that the
body perfectly absorbs the incoming energy, whereas a value of unity means that
the body perfectly reflects the entire energy. The albedo of ice is much higher than
the albedos of other Earth surfaces. Its exact value depends on the nature of ice (for
instance, its surface roughness) at a given location, and varies from about 0.35 to
about 0.50 for clean ice, and, respectively, from 0.15 to 0.25 for dirty ice (Paterson
1994). The presence of snow significantly increases the surface albedo: it can be as
high as 0.87 for newly fallen snow (Weeks 2010). Hence, compared to bare ice, the
amount of solar energy absorbed by snow-covered ice can be reduced by a factor of
about three. For comparison, a typical albedo of ocean surface can be as low as 0.06
(meaning that 94% of incoming energy heats the underlying water).
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The solar energy that falls on the ice, depending on particular local conditions
(such as the air temperature), can drive a number of thermodynamic processes. In
the first place, melting of ice can occur on its surface. The amount of energy that is
used during this process is defined by the latent heat of melting, which for water ice
has the value of 3.34 × 105 J kg−1. On the other hand, some energy can be released
from ice if water evaporation occurs at the ice surface; the amount of this energy is
described by the latent heat of vaporization, which has the value of 2.8 × 106 J kg−1.
Part of the incoming energy that is not involved it the ice phase change processes
is transferred (conducted) into the ice interior. This heat transfer occurs at the rate
defined by the thermal conductivity parameter, which for pure ice at 272 K has
the value of 2.22 Wm−1 K−1. For comparison, water at the freezing point has the
conductivity of 0.56 W m−1 K−1, which is a value by a factor of four smaller than
that for ice. The amount of energy which is added to (or released from) a body as a
result of a temperature change is described by the specific heat parameter, (or specific
heat capacity) which for ice at 263 K has the value of 2.11 × 103 J kg−1 K−1. For
comparison, the specific heat capacity of air-free water is 4.18 × 103 J kg−1 K−1.

As ice is heated it expands, as nearly all natural materials (a rare exception is
water near its freezing point, since it contracts with an increase in temperature). The
mechanismof thermal expansion,which is usually neglectedwhendealingwith ice on
geophysical scales, may be important in the context of civil engineering applications,
when stresses exerted by ice on structures need to be evaluated. The rate of expansion
is defined by the thermal expansion coefficient, which for ice at 263 K is equal to
5.2 × 10−5 K−1.

There aremanymore thermodynamic phenomenawhich take place in andbetween
ice, water and air, and which need to be accounted for when analysing in detail the
energy balances for sea and polar ice. These phenomena, however, which are often
very complex and difficult to describe formally, are beyond the scope of this book
and, therefore, are nor treated here.
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Chapter 4
Sea Ice in Civil Engineering Applications

In civil engineering applications, in which an interaction between a structure and a
floating ice cover occurs, the main interest is in the evaluation of forces which the
ice exerts on the structure, with the particular importance of their maximum magni-
tudes, since these determine design loads for a given engineering object. As already
discussed in Chap. 3, a variety of deformation mechanisms can be observed in ice,
depending on stress, strain and strain-rate to which the material is subjected. Typi-
cally, at the beginning of an ice–structure interaction process, elastic strains develop
in ice, but these are small in magnitude compared to other modes of deformation.
When the ice is in good contact with the structure (is frozen to its walls), so that the
forces (induced by winds and water currents) which drive the ice change slowly in
time, and when the sea waves are small, then the material deforms in a continuous
way, by creep. If, however, the stresses in ice are large, and/or the sea wave action
breaks the ice cover, then the ice–structure interaction has a dynamic character, and
the ice behaves in a typical brittle manner.

Inwhat follows in this chapter, the three above-mentioned types of the icemechan-
ical behaviour, that is, the elastic, creep and brittle responses of the material, will be
analysed. Hence, several problems of the interaction between a coherent floating ice
cover and an engineering structure are discussed. First, in Sect. 4.1, the problem of
purely elastic response of ice during its short-time (measured in seconds) interaction
with a rigid vertical structure is investigated, with the aim to evaluate the magnitudes
of the maximum horizontal forces exerted on the structure; these forces are assumed
to be those which lead to an elastic buckling failure of an ice plate under compres-
sive and transverse loadings. Then, in Sect. 4.2, quasi-static ice–structure interaction
events lasting for hours and days are investigated, in which the deformations of
ice are dominated by its creep. Hence, rheological models describing the creep of
sea ice are first discussed, and these models are used to analyse the mechanism of
creep buckling of a floating ice sheet, and then the interaction problems involving
rigid structures of rectangular and cylindrical planar cross-sections are considered.
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Further, on the basis of the results of numerical simulations, the effects of different
sea ice rheologies on the predicted magnitudes of the ice–structure interaction forces
are examined. Finally, Sect. 4.3 is devoted to the problem of a dynamic impact of an
ice floe on a structure, during which the ice behaves in a brittle manner.

4.1 Elastic Interaction of Ice with a Rigid Wall

The purely elastic behaviour of ice is rarely observed in floating ice, which is due
to the fact that at typical stress levels in sea ice (1–5MPa), creep strains overtake
elastic ones within a period of seconds after the application of loading forces. Despite
this, the problem of evaluating the forces in ice during the very short period of its
elastic response is of practical importance, since these forces may reach the values
which exceed the magnitudes of forces in ice at later, creep or fracture, modes of
deformation. Hence, the elastic response forces need to be taken into account when
determining design loads on an engineering structure.

It is a common assumption (Sanderson 1988) that the maximum values of the
elastic response forces exerted on a structure are bounded by the magnitude of a
force which is required to cause an elastic buckling of the part of an ice cover which
directly interacts with the structure. Usually, the floating ice sheet that interacts with
a structure is supposed to have, in the horizontal plane, a shape of a truncated wedge
of a finite or semi-infinite length. Such a geometry reflects the conditions frequently
occurring in the field, when radial cracks propagating from the vertical edges of
the structure develop, bounding thus the domain of the ice cover which effectively
interacts with the structure.

When analysing the behaviour of coherent floating ice, it is usually assumed that
the ice cover can be treated as a continuous plate. The problem of the elastic buckling
of a wedge-shaped plate on an elastic foundation (the underlying water) has been
investigated in a number of papers, for instance, by Kerr (1978), Nevel (1980) and
Sanderson (1988), in which approximate estimates for the buckling forces, derived
analytically, are given. Some relevant analytical results can be also found in the work
by Kerr and Palmer (1972), and experimental data on the elastic buckling of ice have
been reported by Sodhi et al. (1983). The results presented here have been obtained
by the author Staroszczyk (2002) by applying a finite-element method (FEM). These
results are compared with those predicted by approximate solutions proposed by
Kerr (1978), and it will be shown that the approximations of the latter author lead to
a significant overestimation of the buckling forces that a wedge-shaped elastic plate
can sustain.Moreover, some inconsistency in the analytical results byKerr (1978) has
been discovered. Therefore, by fitting to the FEM results obtained, new approximate
formulae enabling simple, but reliable, calculations of the buckling forces in floating
wedge-shaped elastic plates have been proposed for the use by engineers.
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4.1.1 Interaction Problem Formulation

The behaviour of a continuous ice cover floating on the free surface of water is con-
sidered. The ice is assumed to be driven by horizontal drag forces due to the wind
and water currents action. As the ice cover deforms, not only in the horizontal direc-
tion but also transversely, it undergoes vertical loading resulting from the reaction of
the underlying water. In this analysis, the ice cover is treated as an elastic plate that
floats on a liquid foundation, and is subject to the combined action of the in-plane
as well transverse (out-of-plane) forces. The definitions of the internal forces (axial
and shear forces and bending moments) and external loadings, together with the
adopted frame of rectangular coordinates, are shown in Fig. 4.1a. The plate of ice is
assumed to be of uniform thickness, denoted by h, and to be in perfect contact with
the underlying water (that is, there are no air pockets between the ice and the water),
see Fig. 4.1b. Due to the possible variation of the ice porosity and temperature with
depth, the mechanical properties (such as the Young modulus and the ice viscosity)
may change across the ice cover (usually, the ice is weaker near its base). The conse-
quence of this is the plate inhomogeneity along the vertical direction, which implies
that, in general, the neutral and middle surfaces in the plate do not coincide.

The vertical z-axis, directed downwards, is chosen in such a way that z = 0 at
the top surface of the plate, and z = h at its bottom surface. The plate transverse
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displacement along the z-axis is denoted by w. The ice is assumed to be in contact
with an engineering structure and to exert forces on it. For simplicity, the structure
is modelled as a rigid body which interacts with the floating ice along vertical walls.
The prime objective is to evaluate the forces which the wind-driven ice exerts on
the structure. In particular, the magnitude of the horizontal compressive force in ice
under which the ice plate buckles in an elastic manner will be determined, as this
buckling force defines the maximum horizontal load exerted on the structure.

In order to solve the problem, the classical Kirchhoff–Love theory of thin plates
(Timoshenko and Woinowsky-Krieger 1959) is applied, which is based on the
assumptions that (1) the plate thickness is small compared to its characteristic lengths,
(2) the plate deflections are small, that is, not exceeding its thickness, (3) the effects
due to shear stresses are neglected, so (4) the plate cross-sections which are normal
to the middle plane prior to bending remain plane and normal to the middle surface
in the deformed state, and (5) the normal stresses in the direction transverse to the
plate surfaces are disregarded.

In the horizontal plane Oxy, the internal loads acting in the plate are the axial
forces Nx and Ny (considered positive in tension) and the shear forces Nxy = Nyx ,
all measured per unit length. Apart from them, there are tangential forces (tractions)
acting over the top and bottom surfaces of the plate, caused by the wind stress and
water drag. The two components of these forces, defined per unit area of the middle
plane of the plate, are denoted by τx and τy (see Fig. 4.1c). The equilibrium balances
of the forces along the x and y axes, ignoring inertia forces due to small horizontal
velocities of ice, are expressed by

∂Nx

∂x
+ ∂Nxy

∂y
+ τx = 0,

∂Nxy

∂x
+ ∂Ny

∂y
+ τy = 0. (4.1)

Along the z-axis, the plate is subject to the vertical shear forces, Qx and Qy , and the
transverse distributed load q. In a deformed state, also the forces Nx , Ny and Nxy , all
acting in directions tangential to the deflection surfacew(x, y), have relevant vertical
components. Hence, neglecting the own weight of ice, the projection of all forces on
the z-axis direction gives

∂Qx

∂x
+ ∂Qy

∂y
+ q + Nx

∂2w

∂x2
+ ∂Nx

∂x

∂w

∂x
+ Ny

∂2w

∂y2
+ ∂Ny

∂y

∂w

∂y
+

+ 2Nxy
∂2w

∂x∂y
+ ∂Nxy

∂x

∂w

∂y
+ ∂Nxy

∂y

∂w

∂x
= 0.

(4.2)

Considering the equilibrium of moments acting on an infinitesimal plate element
with respect to the y and x axes, we find that

∂Mx

∂x
− ∂Mxy

∂y
− Qx = 0,

∂My

∂y
− ∂Mxy

∂x
− Qy = 0, (4.3)
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where Mx and My are the bending moments, and Mxy = Myx are the twisting
moments, all defined per unit length. The only transverse load that is exerted on
the plate comes from the reaction of the underlying water, when the plate is either
lifted or depressed from its floating equilibrium state. It is assumed that the reaction of
thewater is purely elastic and is proportional to the plate deflectionw (thus, the liquid
base can be regarded as the Winkler–Zimmerman-type foundation). Accordingly,

q = −�wgw, (4.4)

where �w is the density of water and g is the acceleration due to gravity.
It is useful to eliminate the vertical shearing forces Qx and Qy from the equilib-

rium balances (4.2) and (4.3), thus reducing the number of equations to be solved.
Accordingly, by inserting in (4.2) the expressions for Qx and Qy defined by (4.3),
and then using relations (4.1) and (4.4) in the resulting equation, one arrives at the
equilibrium equation of the form:

∂2Mx

∂x2
− 2

∂2Mxy

∂x∂y
+ ∂2My

∂y2
+ Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
+

− �wgw − τx
∂w

∂x
− τy

∂w

∂y
= 0.

(4.5)

This equation involves the bending moments and in-plane loads, the plate deflection
w and its spatial derivatives, and the driving forces τx and τy .

The internal forces in Eq. (4.5) can be expressed in terms of the stresses σxx , σyy

and σxy which act in the transverse cross-sections of the plate. Hence, the in-plane
axial and shear forces are given by

Nx =
h∫

0

σxxdz, Ny =
h∫

0

σyydz, Nxy =
h∫

0

σxydz, (4.6)

and the bending and twisting moments are defined by

Mx =
h∫

0

σxx (z − z0)dz, My =
h∫

0

σyy(z − z0)dz,

Mxy = −
h∫

0

σxy(z − z0)dz.

(4.7)

In relations (4.7), z0 is the position of the neutral surface in the plate in its undeformed
state.
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To proceed further, one needs specific constitutive laws describing the material
response of ice; that is, the equations which relate stresses to strains (in the case of
the elastic response), strain-rates (in the case of the creep response), or both (in the
case of the viscoelastic response of ice or more complex material responses).

The equilibrium equation (4.5) describes the two-dimensional behaviour of a
plate floating on the water surface. In order to solve this equation, even for sim-
ple two-dimensional geometries, one has to resort to one of discrete methods, since
no analytical solutions are available. As already mentioned, in typical ice–structure
interaction phenomena, due to the propagation of cracks in the ice cover, the domain
of ice which actively interacts with an engineering object has, to a good approxi-
mation, the horizontal shape of a truncated wedge, with the ice which is outside the
wedge playing only a passive role. The geometry of the problem is illustrated in
Fig. 4.2a, showing the planar view of the wedge-shaped plate being in contact with
a flat, vertical wall at x = 0.

Before solving the elastic plate buckling problem, the latter is simplified by assum-
ing that the plate wedge, defined by the wall width b0 and the angle α ≥ 0, is sym-
metric about the x-axis, and extends to infinity. Further, it is also assumed that the
forces induced by the wind and water drag action are symmetric about the x-axis as
well, so that the plate is pushed towards the structure along the negative direction
of the x-axis. Due to the above assumptions, another simplification is introduced,
by supposing that the plate deflection w and all the loads and forces acting on the
plate are functions of only one horizontal coordinate, x . Thus, w = w(x), q = q(x),
Mx = Mx (x), etc., which implies that there is no bending of the plate in the lateral
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y-direction; that is, the plate is bent cylindrically in the vertical plane Oxz. Accord-
ingly, the problem is in fact reduced to that of a beam of thickness h and variable
width b(x) floating on water, and subjected to bending and axial compression (how-
ever, the dependence of the plate flexural rigidity on the Poisson ratio, in a form
typical of plates, will be retained to account for the constraints in the lateral y-axis
direction). In spite of the considerable simplifications, it is believed that the results
obtained, at least for small wedge angles α, will not differ significantly from those
that can be obtained by solving a fully two-dimensional plate problem, and therefore
they will prove useful for engineering practice.

Since the problem is treated as a one-dimensional, we omit henceforth the sub-
scripts in the notations of relevant internal forces, as shown in Fig. 4.2c. The equi-
librium equation (4.5) now becomes

d2M

dx2
+ N

d2w

dx2
= �wgw + τ

dw

dx
, (4.8)

where τ = τx . The plane cross-section assumption implies a linear variation of axial
strains εxx (x, z) and εyy(x, z) with z, with zero strains at the neutral surface. Sup-
posing that the axial strain εxx (x, z) across the plate is proportional to the curvature
κx of the middle surface of the deformed plate, one can express εxx as

εxx = κx (z − z0). (4.9)

By Hooke’s law, the axial strains are related to axial stresses by

εxx = 1

E
(σxx − νσyy), εyy = 1

E
(σyy − νσxx ), (4.10)

in which the Young modulus is a function of z. To ensure the plate continuity in the
lateral y-direction, the constrain εyy = 0 is introduced. Due to this constraint, rela-
tions (4.10) supply the following expression for the axial stress σxx due to bending:

σxx = E(z)

1 − ν2
κx (z − z0), (4.11)

which shows that the axial stress distribution across the plate is not linear in z because
of E being a function of z. Using the latter expression for σxx in the bending moment
definition (4.7), on obtains the relation

M = κx Dp , (4.12)

in which Dp is the flexural rigidity of the plate defined by

Dp = 1

1 − ν2

h∫

0

(z − z0)
2 E(z)dz. (4.13)
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The position of the neutral surface, z0, can be determined from the condition that the
resultant axial force N due to bending, obtained by integrating over 0 ≤ z ≤ h the
stress σxx defined by (4.11), is zero. This yields

h∫

0

(z − z0) E(z)dz = 0. (4.14)

For practical purposes, it can be assumed that Young’s modulus varies linearly with
the depth of ice. Let E = E0 at the upper surface of ice (z = 0), and E = βE0 at the
ice base (z = h), with 0 ≤ β ≤ 1. Then, for the linear variation of E(z) between the
two limit values, relation (4.14) gives

z0 = h
1 + 2β

3(1 + β)
. (4.15)

With z0 defined by (4.15), the plate flexural rigidity (4.13) becomes

Dp = E0h3

12(1 − ν2)

[
1 + 4β + β2

3(1 + β)

]
. (4.16)

Obviously, for β = 1 (E is uniform across the plate thickness), (4.15) yields z0 =
h/2, and the plate rigidity (4.16) is equal to D = E0h3/[12(1 − ν2)]. On the other
hand, for the limit case of β = 0, the neutral surface position is z0 = h/3, and the
plate flexural rigidity Dp reduces to 1/3 of that for the homogeneous ice plate.

Now, let us return to the plate equilibrium equation (4.8). Due to the small deflec-
tion assumption, implying (dw/dx)2 � 1, the plate middle surface curvature (con-
sidered positive if the deformed plate is convex downward) can be approximated by
κx = −d2w/dx2. By substituting the latter expression for κx in the bending moment
definition (4.12), then using the resulting expression for M in (4.8), and finally by
multiplying both sides of the ensuing equation by the plate width b(x), one arrives
at the following fourth-order differential equation for the plate deflection w(x):

Dp b(x)
d4w

dx4
+ P

d2w

dx2
+ �wgb(x)w = 0, 0 < x < ∞, (4.17)

where the varying width of the wedged-shaped plate is defined by

b(x) = b0 + 2x tanα. (4.18)

In Eq. (4.17), P = −Nb is the total compressive load acting on the whole cross-
section of width b of the plate wedge (see Fig. 4.2). The load P is assumed to be
independent of x in the region adjacent to the rigid structure located at x = 0; that is,
in the region in which, for α > 0, elastic buckling of the plate is expected to occur.
Moreover, in derivation of (4.17), the horizontal traction τ has been neglected. Such
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a simplification seems to be permitted, since a typical magnitude of the buckling
force P is much larger than the resultant tangential load due to wind and water drag
stresses applied over a relatively small area of the ice cover in the immediate vicinity
of the structure.

The differential equation (4.17) must be supplemented by boundary conditions at
the ice–structure contact area at x = 0. Two types of these conditions are considered.
The first type describes the case of a simply-supported edge of the plate, with zero
deflectionw and bending moment M , whereas the other type corresponds to the case
of a rigidly-supported (clamped) end, with zero deflection and zero slope at x = 0.
According to Sanderson (1988), the first case of the simply-supported plate at x = 0
is more realistic in practice, since the perfect contact between floating ice and a
structure is rarely observed in the field. These two types of boundary conditions are
expressed, respectively, by the relations

simply-supported end: w(0) = 0,
d2w

dx2
(0) = 0, (4.19)

rigidly-supported end: w(0) = 0,
dw

dx
(0) = 0. (4.20)

Besides the boundary conditions (4.19) and (4.20), the regularity condition of the
plate deflection being bounded at x → ∞ has to be satisfied.

4.1.2 Finite-Element Solution of the Problem

The fourth-order differential equation (4.17), supplemented by the boundary con-
ditions, either (4.19) or (4.20), describes an eigenvalue problem from which the
buckling force P can be calculated. Because of the presence of the variable coef-
ficient b(x) in (4.17), no exact closed-form analytical solution is available for the
general case of a wedge-shaped plate defined byα > 0. However, in a particular case
of α = 0, corresponding to the case a plate of uniform width b(x) = b0, Eq. (4.17)
simplifies to that with constant coefficients. For such an equation, an analytical solu-
tion can be obtained in a straightforward manner, and has the form

P0 = 2b0
√

�wgDp , (4.21)

which is valid for both simply-supported and clamped boundary conditions at x = 0
(Kerr 1978). The corresponding buckling mode, described by w(x) = sin(k0x),
yields the buckling half-wave length L0 given by

L0 = π/k0 , with k40 = �wg

Dp
. (4.22)

An attempt to construct a semi-analytical solution of the problem defined by
Eqs. (4.17), (4.19) and (4.20) for the case of α > 0 was made by Kerr (1978).
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However, it has proved that the approximate relations proposed in the latter paper
are erroneous (Staroszczyk 2002), since these relations are inconsistent with the
solution (4.21) for α = 0, and they significantly overestimate the magnitudes of
buckling forces for the case of a rigidly-supported plate; this will be demonstrated
in Sect. 4.1.4.

In order to solve the eigenvalue problem defined by Eqs. (4.17), (4.19) and (4.20),
one can apply a discrete method, for instance, a finite-difference method. It turns out,
however, that then the discretization of the problem leads to the necessity of solving
a generalized eigenvalue problem for non-symmetric matrices, which is much more
difficult to solve numerically than a problem involving symmetric matrices. For this
reason, a finite-element method (FEM) is applied, in which case all the matrices
resulting from the discretization of the problem are symmetric, which significantly
simplifies numerical calculations.

A weighted residual, or Galerkin, method (Zienkiewicz et al. 2005) is employed,
in which the problem equation is satisfied in an integral mean sense. Following this
method, the plate of variable width b is discretized along the x-axis by introducing
one-dimensional finite elements. To ensure the continuity of both the plate deflection
curve and its slope between elements, at each discrete nodal point two parameters are
used to describe the plate deformations, namelyw and dw/dx . Assuming that a given
finite element is defined by two nodes i and j , located at xi and x j , respectively, we
approximate the continuous function w(x) within the element i j by means of four
interpolation (shape) functions Φr (x) (r = 1, . . . , 4) as follows:

w(x) = wiΦ1 + θiΦ2 + w jΦ3 + θ jΦ4 , (4.23)

where θi = (dw/dx)i and θ j = (dw/dx) j are the nodal values of the plate slope.
Let introduce a dimensionless local coordinate ξ defined by

ξ = x − xc
a

, xc = xi + x j

2
, −1 ≤ ξ ≤ 1, (4.24)

where 2a is the length of the element i j . Then, the adopted shape functions are given
by

Φ1 = 1

4
(ξ − 1)2(2 + ξ),

Φ3 = 1

4
(ξ + 1)2(2 − ξ),

Φ2 = a

4
(ξ − 1)2(ξ + 1),

Φ4 = a

4
(ξ + 1)2(ξ − 1).

(4.25)

By multiplying Eq. (4.17), in turn, by a set of weighting functions, which in the
Galerkin method are identical with the interpolation functions Φr , and then integrat-
ing the resulting relations over the plate length x ≥ 0 and applying in the process
Green’s theorem (Zienkiewicz et al. 2005) to reduce by one the order of differentia-
tion, one obtains a system of 2N linear algebraic equations, with N being the number
of discrete nodes. This system of equations can be expressed in matrix form as

(K + PB + C)w = O, (4.26)
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where the vectorw = (w1, θ1, . . . , wi , θi , w j , θ j , . . . , wN , θN )T contains the values
of the plate deflections and slopes at all nodal points of the discrete system. The plate
stiffness matrix K and the matrices B and C are aggregated from respective element
matrices K e, Be and Ce in a way typical of the finite-element method (Zienkiewicz
et al. 2005). The element matrices, each of the dimension 4 × 4, have the entries
which for the element i j are defined by the following integrals:

Ke
rs = Dp

x j∫

xi

b(x)
d2Φr

dx2
d2Φs

dx2
dx, Be

rs =
x j∫

xi

Φr
d2Φs

dx2
dx,

Ce
rs = �wg

x j∫

xi

b(x)ΦrΦsdx, (r, s = 1, . . . , 4; i, j = 1, . . . , N ),

(4.27)

in which the shape functions involved are given by (4.25).
Equation (4.26) defines a generalized eigenvalue problem from which the value

of the buckling force P , the lowest eigenvalue of the problem, can be calculated,
together with the associated eigenvector w. To accomplish this, the matrix B is first
decomposed into a product of the lower and upper triangular matrices, and then, by
matrix inversions and multiplications, the general eigenvalue problem is reduced to a
standard problem for a real and symmetric matrix. The latter problem can be solved
by using standard numerical tools.

4.1.3 Numerical Simulations

The finite-element model presented in Sect. 4.1.2 was applied to simulate the inter-
action od a wedge-shaped ice cover with a rigid wall. The model included 200 finite
elements of the uniform length for plates thinner than h = 0.2m, and 100 elements
otherwise, and the length of each element was assumed to be equal to 3h. Thus, the
length of the plate adopted to approximate the behaviour of a semi-infinite ice cover
was equal to either 600h or 300h. The material constants were taken to be those
pertinent to isotropic granular T1 ice at temperature −5 ◦C. Hence, on account of
relations (3.2) and (3.7), the Young modulus was E = 8.99GPa, and the Poisson
ratio was ν = 0.308. The water density was assumed to be �w = 103 kgm−3, and
g = 9.81m s−2.

The results of simulations illustrating the dependence of the elastic buckling load
P on the ice cover thickness h and the wedge angle α, for a rigid structure of the
width b0 = 10m, are plotted in Fig. 4.3. The solid lines in the figure show the
results obtained for a simply-supported edge of the plate at x = 0, and the dashed
lines correspond to the case of a rigidly-supported (clamped) edge. The labels by
the curves indicate the ice cover thickness in metres. The values of the buckling
forces are normalized by the magnitude of the load P0 defining the buckling force
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Fig. 4.3 Dependence of the normalized buckling load P/P0 on the wedge angle α and the ice plate
thickness h for simply-supported (solid lines) and rigidly-supported (dashed lines) edge conditions
at x = 0, for a structure width b0 = 10m

of a parallel-sided plate of width b0 and the respective thickness h, see Eq. (4.21);
accordingly, the ratios P/P0 are plotted in the graph.

Figure 4.4 presents the average pressures, defined by P/(b0h), which are exerted
on a structure by the floating ice cover. Again, the rigid wall is assumed to be 10m
long. The dependence of contact pressures on the plate geometry described by the
angle α for different ice thicknesses h is illustrated for a plate which is simply-
supported at its edge at x = 0. The horizontal dashed-dotted line in the figure indi-
cates a pressure level at which ice fails by crushing. The value of the latter limit
pressure, corresponding to the compressive strength of ice (see p. 51) was adopted as
5MPa. Above this value, elastic buckling is unlikely to occur in the ice cover since
the ice strength is exceeded earlier than the critical magnitude of compressive load P
needed to buckle the ice is reached. The plots in Fig. 4.4 show that, for the range of
most realistic wedge angles 30◦ � α � 45◦, elastic buckling can occur only for the
ice which is thinner than about 0.2m. In such a case, the average contact stresses at
the structure wall are smaller than the ice compressive strength of 5MPa. For thicker
ice, in turn, the stresses in ice at its buckling exceed the ice compressive strength.
Hence, such thick ice crushes in a brittle manner, and themaximum contact pressures
on the wall are equal to 5MPa. When the plate is clamped at the wall, rather than
simply-supported, then the limit ice thicknesses h above which no elastic buckling
of ice can occur decreases to about 0.12m.

Corresponding to the previous diagram isFig. 4.5, showing the effect ofweakening
of ice with its increasing depth on the average contact pressures sustained by a
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Fig. 4.4 Dependence of the average contact pressure on the wedge angle α and the ice sheet
thickness h for simply-supported edge conditions at x = 0 and a structure width b0 = 10m. The
dashed-dotted line indicates the compressive strength of ice
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Fig. 4.5 Variation of the average contact pressure with angle α and the parameter β for the plate
h = 0.2m thick and b0 = 10m wide at x = 0, with a simply-supported edge. The dashed-dotted
line indicates the compressive strength of ice
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Fig. 4.6 Buckling deflection modes for various wedge angles α (given in deg), for the plate h =
0.2m thick and b0 = 10m wide at x = 0, with a simply-supported edge

structure. The plots, presenting the predictions for the ice cover of thickness h =
0.2m and the structure width b0 = 10m, illustrate the dependence of the average
contact pressure on the parameterβ, the latter describing a linear variation ofYoung’s
modulus E(z) from its maximum value E0 to βE0 between the top and the bottom
surfaces of ice, respectively.

Figure 4.6 illustrates the shapes of buckling deflection modes for an ice plate of
thickness h = 0.2m and width b0 = 10m, with simply-supported edge conditions
at x = 0. The curves depict the plate deflections w for different wedge angles α,
expressed in deg. For a plate of uniform width, defined by α = 0, the fundamental
buckling mode is described by the function w(x) = sin(k0x), with k0 given by rela-
tion (4.22). For the adopted material constants, the latter parameter determines the
buckling half-wave length L0 = π/k0 equal to 16.0m. We note that the buckling
mode length obtained by solving numerically the eigenvalue problem (4.26) agrees
well with the length determined analytically. It can be also observed that for wedge
anglesα > 0, even as small as 5◦, the deflection of the ice plate in buckling attenuates
rapidly with the distance x from the structure, showing that elastic buckling of the
ice cover can take place only in a small region adjacent to the structure wall at x = 0.
It also confirms that the length of the wedge-shaped plate adopted in the discrete
model, equal to minimum 300h (i.e. 60m for h = 0.2m) seems to be adequate, as
the deflections w at the truncated edge of the buckled plate are negligibly small for
α ≥ 5◦.

4.1.4 Approximate Analytical Solution

As already noted earlier in this section, Kerr (1978) attempted to construct semi-
analytical formulae that enable simple estimations of elastic buckling forces in
wedge-shaped floating ice plates for the general case of α > 0. The relations derived
by Kerr are expressed by
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simply-supported end: P = c1k0Dp (k0b0 + 2 tanα),

rigidly-supported end: P = c2k0Dp (2k0b0 + 2 tanα),
(4.28)

where k0 is defined in (4.22), and c1 = 5.3 and c2 = 8 are constants. It can be easily
proved, however, that for the angleα = 0 (the case of a parallel-sided plate) relations
(4.28) give P/P0 = c1/4 = 1.325 for a simply-supported plate, and P/P0 = c2/2 =
4 for a rigidly-supported plate, instead of unity in either case. Therefore, the above
formulae by Kerr (1978) are apparently erroneous, with a particularly large error
occurring in the case of a plate clamped at its edge at x = 0. For this reason, the
finite-element results presented in the previous Sect. 4.1.3 have been used to construct
alternative approximate relations to be used to estimate plate buckling forces with
accuracy levels that are satisfactory for an engineer. Such an approximate relation,
common for both simply and rigidly-supported plate ends, can be expressed in the
following dimensionless form (Staroszczyk 2002):

P

P0
= 1 +

(
h

h∗

)r1 (
b0
b∗
0

)−r2 (
r3 α + r4 α2 + r5 α3

)
, (4.29)

in which P0 is defined by (4.21), and ri (i = 1, . . . , 5) are coefficients. In Eq. (4.29),
two characteristic scales are introduced: h∗ = 0.1m for the plate thickness, and
b∗
0 = 10m for the width of a structure interacting with floating ice.
The coefficients ri have been determined by correlating relation (4.29) with the

finite-element results by using the method of least-squares. The correlations have
been carried out for ice thicknesses h ranging from 0.05 to 0.5m and structure widths
b0 ranging from 5 to 50m, separately for the two types of boundary conditions at
the ice–structure interface, defined by (4.19) and (4.20). The best results have been
achieved with the two sets of the coefficients ri listed in Table 4.1.

Figure 4.7 compares the predictions of the finite-elementmethod (solid lines) with
the approximations (4.28) (dotted lines) and (4.29) (dashed lines), on an example
of the plate h = 0.2m thick and b0 = 10m wide. It is immediately seen that, for
the whole range of wedge angles α ≤ 50◦, the results obtained by Kerr (1978), and
subsequently repeated by Sanderson (1988), significantly overestimate elastic buck-
ling forces for a plate which is clamped at x = 0; in the case of a simply-supported
plate edge the FEM results andKerr’s estimates differ by about 20–30%.On the other
hand, a good agreement between the results given by the proposed analytical approx-
imation (4.29) and the finite-element results, for both simply-supported and clamped
plate boundary conditions, is observed. For the adopted parameters (h = 0.2m and
b0 = 10m), the maximum relative discrepancies between the FEM results and those
determined by (4.29) are equal to 2.8% for the simply-supported plate and 4.0% for
the clamped plate.

Table 4.1 Coefficients ri for two types of boundary conditions at the edge x = 0

r1 r2 r3 r4 r5

Simple support 0.630 0.840 2.002 −1.959 1.681

Rigid support 0.590 0.786 4.276 −4.698 3.678
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Fig. 4.7 Comparison of the finite-element results (solid lines) with the estimates given byEq. (4.29)
(dashed lines) for a floating ice sheet h = 0.2m thick and b0 = 10mwide, for simply-supported and
rigidly-supported edge conditions. Dotted lines show the results predicted by Eq. (4.28) proposed
by Kerr (1978)

For other combinations of h and b0 than that illustrated in Fig. 4.7 (the ranges
5m ≤ b0 ≤ 50m, 0.05m ≤ h ≤ 0.5m, and 0◦ ≤ α ≤ 50◦ have been explored), the
maximum relative discrepancies between the FEM and approximate analytical pre-
dictions (4.29) are of similar order. As the results presented by Staroszczyk (2002)
demonstrate, in the case of narrow plates (b0 = 5m), these discrepancies do not
exceed 6.6% for simply-supported plates, and 9.5% for clamped plates. For much
wider plates (b0 = 50m), in turn, the maximum relative differences are smaller, and
equal to 3.8% and 5.7% for simply-supported and clamped plates, respectively. This
shows that the proposed approximate formula (4.29) provides the predictions which
can be regarded as sufficiently accurate for civil engineering applications.

4.2 Interaction of Creeping Ice with a Structure

As has already been pointed out on a few occasions in this book, the creep behaviour
of sea ice is a dominant mechanism of its deformation in a wide range of stress,
strain and strain-rate regimes. This section starts with the discussion of rheological
models describing the creep behaviour of ice. Then, creep buckling of a floating
ice plate is investigated, and key features of this mechanism are analysed in the
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context of the elastic buckling phenomenon considered in Sect. 4.1. Further in this
section, based on the equations formulated in Sect. 4.1.1, a two-dimensional finite-
element model is presented for an ice–structure interaction problem, in which the
creep rheology is implemented. This model is applied to calculate the forces exerted
by sea ice on a rigid structure of a rectangular planar cross-section; the results are
shown in Sect. 4.2.4. Finally, in Sect. 4.2.5, the interaction of sea icewith a cylindrical
structure is investigated. Hence, the ice equilibrium equations are formulated, and
solved numerically, in cylindrical polar coordinates, and the results obtained for
different rheological models for ice are compared to examine their effect on the
predicted forces acting on the structure walls.

4.2.1 Rheological Models for Sea Ice

Various forms of the constitutive laws describing the rheology of creeping ice have
been formulated, tested in numericalmodels andverifiedbyfield observations. Essen-
tially, these laws include, among others, non-linearly viscous, viscous-plastic and
elastic-viscous-plastic rheologies, all constructed with the purpose to describe as
well as possible the complex mechanical response of sea ice to loading. It appears
that twomajor classes of the rheological models are of the greatest significance to the
sea ice modelling; these are: non-linearly viscous fluid models, which are formally
and computationally simpler, but less realistic, and more realistic, and more com-
plex, non-linearly viscous-plastic models, which describe distinct material responses
below and above a critical level of a strain-rate invariant. The second class of models
also comprises constitutive formulations which describe the failure of ice by other
mechanisms than plasticity, for instance by brittle fracture.

The non-linearly viscous fluidmodels are usually based on a Reiner-Rivlin consti-
tutive equation. The first model of this kind was introduced to the sea ice applications
by Smith (1983), and was followed by Overland and Pease (1988) and a few other
authors, including Gray and Morland (1994), Schulkes et al. (1998) and Morland
and Staroszczyk (1998).

The viscous-plastic rheological models originate from the work by Hibler (1979).
The main idea of these models is to use an elliptic plastic yield curve which restricts
permissible stress states in the floating ice pack. For strain-rates below a critical
value the stresses in ice are determined by a viscous flow relation, while for those
above the critical value the stresses lie on a yield curve. To eliminate some drawbacks
of the original formulation, various modifications of the model were subsequently
proposed (Ip et al. 1991; Hibler and Ip 1995; Tremblay and Mysak 1997; Hibler
2001), including one in which non-physical elasticity was introduced (Hunke and
Dukowicz 1997) in order to improve the numerical performance of the model. A
simplified form of the viscous-plastic rheological model is the cavitating fluid model
proposed by Flato and Hibler (1992). Comparisons between the predictions of the
above two classes of constitutive laws are made by Schulkes et al. (1998), who have
applied four different ice rheologies to simulate the behaviour of an ice cover.
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In what immediately follows, we focus on the viscous-fluid and viscous-plastic
rheologies, since these rheologies will be implemented in numerical models for sea
ice, the predictions of which will be discussed in the further part of this chapter, and
also later in Chap. 5.

Viscous Fluid Model

Commonly, viscous fluid (VF) rheological models are constructed as forms of a
general, frame-indifferent Reiner-Rivlin constitutive law (Chadwick 1999), which
expresses the Cauchy stress tensor σ in terms of the strain-rate tensor and its invari-
ants.When applied to the sea ice pack, which is assumed to be stress-free in diverging
flow (that is, when adjacent ice floes move away from each other), the Reiner-Rivlin
law is expressed as

σ = [φ1(η, γ)I + φ2(η, γ)D] H(−η). (4.30)

In the above equation, I is the unit tensor, and D denotes the two-dimensional strain-
rate tensor, the components of which are defined in terms of the components vi of
the ice velocity vector v by

Di j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
(i, j = 1, 2). (4.31)

In (4.30), η and γ are two invariants of D, defined for the two-dimensional defor-
mation by

η = tr D, γ2 = 1
2 tr( D̂

2
), (4.32)

where tr(·) denotes the trace of a tensor, and D̂ is the deviatoric strain-rate tensor
given by

D̂ = D − 1
2η I . (4.33)

In strain-rate components, the two invariants, the dilatation-rate η and the shear-rate
invariant γ, are expressed by

η = D11 + D22, γ2 = D2
12 + 1

4 (D11 − D22)
2 . (4.34)

The invariant η is positive in diverging flow, and negative in converging flow.
The function H(·), entering Eq. (4.30), denotes the Heaviside unit step function,

which is zero for the negative values of its argument, and is unity for the positive
values of the argument; hence,

H(−η) =
{
1 for η < 0, i.e. in converging flow,

0 for η > 0, i.e. in diverging flow.
(4.35)
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In view of the above definition, the constitutive equation (4.30) gives σ = 0 for the
diverging flow (η > 0).

The two response functions φ1 and φ2, appearing in the general flow law (4.30),
describe the material behaviour of the medium under applied deformation-rates. In
order to express the viscous fluid constitutive law in a more conventional way, that
is, in terms of viscosities, let first introduce the deviatoric stress S, defined by

S = σ + p I, p = − 1
2 trσ, (4.36)

where p denotes a mean pressure in ice. Then, by taking the spherical and deviatoric
parts of both sides of Eq. (4.30), one can determine the bulk and shear responses of
the material, the former response associated with the action of pressure, and the latter
with the action of the deviatoric stress (Morland and Staroszczyk 1998; Staroszczyk
2005). By introducing standard definitions of the bulk and shear viscosities, ζ and μ
respectively, the viscous behaviour of ice can be described by

p = −ζη, S = 2μ D̂, (4.37)

and the material response functions can then be expressed as

φ1 = (ζ − μ)η, φ2 = 2μ. (4.38)

With the above relations, the viscous flow law (4.30) becomes

σ = [(ζ − μ)η I + 2μD] H(−η). (4.39)

Note that this is a constitutive law for an ice pack, that is, a material consisting of a
large number of floes and, therefore, having little ability to sustain tensile stresses on
the scale of a pack. The latter feature is accounted for by the inclusion of theHeaviside
function term in (4.39). When only a single, continuous, floe is considered, then this
term should be omitted in the law.

Since the viscosities μ and ζ are the functions of the current deformation-rate
invariants η and γ, Eq. (4.39) represents, in general, a non-linear constitutive law. In
a particular case of ζ = μ, relation (4.39) simplifies to the form

σ = 2μDH(−η), (4.40)

with a single viscosity measure. While this is not a realistic rheological model for
the sea ice pack, it may have some value for numerical testing (Schulkes et al. 1998;
Staroszczyk 2003).

An example of the rheological model based on the general Reiner-Rivlin viscous
fluid law (4.30) is the model proposed by Overland and Pease (1988), sometimes
referred to as the OP-rheology. In this constitutive model, the isotropic stress in ice
(described by the response function φ1) is assumed to depend on the ice thickness
h, whereas the deviatoric stress (defined by the function φ2) depends also on the
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shear-rate invariant γ (that is, there is no dependence on the dilatation-rate η). This
specific form of the rheological law was investigated by Schulkes et al. (1998), who
used it in finite-element simulations of a large sea ice pack behaviour under the action
of wind. Another, more complex, form of the non-linearly viscous fluid rheological
model was developed by Morland and Staroszczyk (1998). In their model, possible
stress states in sea ice are assumed to lie within an envelope in the principal stress
plane, whichmakes it a little similar to viscous-plastic rheologicalmodels considered
further in this section.

Viscous-Plastic Model

In the viscous-plastic rheological models, often referred to as the VP-models, intro-
duced to the sea ice dynamics by Hibler (1979), it is assumed that floating ice has
zero tensile strength, and when it is subject to compressive stresses, which occur
during converging flow of the ice pack, the ice can behave in two ways, depending
on the current rate of its deformation. Below a certain critical level of strain-rate,
the ice behaves as viscous fluid, whereas above that critical strain-rate it deforms
by plastic yield. The limit stress state in the ice in its plastic flow is defined by a
yield curve, the shape of which prescribes admissible stresses in the material. When
viewed on the principal stress plane, the stress states on the yield curve occur during
plastic flow, while those inside the yield curve occur during viscous flow.

Various shapes of the yield envelopes have been proposed and used in simula-
tions so far; some of them, plotted in principal stress axes (σ1,σ2), with positive
values denoting tension, are presented in Fig. 4.8. Usually, an elliptic curve has been
adopted (Hibler 1979; Ip et al. 1991), though other shapes, including tear-drop curves
(Rothrock 1975; Morland and Staroszczyk 1998) have also been tried. For compari-
son, the straight lines, representing the Coulomb-Mohr rheology widely applied for
granular media, are also plotted in the figure.

In the original formulation of the viscous-plastic model (Hibler 1979) zero-tensile
strength of ice was postulated. It turned out, however, that such an assumption gives
rise to some problemswith numerical stability during simulations, since an arbitrarily
small change in the divergence rate through zero results in a large change in the
creep response of the medium. For this reason, to remove this source of numerical
instability, the original viscous-plastic model has been modified in such a way that a
small tensile strength of ice is allowed in diverging flow regime (Staroszczyk 2006).
Hence, two strength parameters: P1 > 0 for compression and P2 > 0 for tension,with
P1 	 P2, are used in the modified viscous-plastic model to describe the properties
of sea ice. In this manner, without introducing any non-physical diffusive terms in
the flow equations (which is a common practice in numerical modelling of sea ice),
the stability of a numerical method is significantly improved. The adopted elliptic
yield curve, plotted in the two-dimensional principal stress space, is illustrated in
Fig. 4.9 (the solid line). The tensile stress states are those in the first quadrant (near
point B) of the (σ1,σ2) plane.

The elliptic yield curve presented in Fig. 4.9 is specified by the equation

F(σ1,σ2) = (σ1 + σ2 + P1 − P2)
2 + e2(σ1 − σ2)

2 − (P1 + P2)
2 = 0, (4.41)
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Fig. 4.8 Comparison of
different yield curves for
viscous-plastic rheology:
H—elliptic curve by Hibler
(1979), R—tear-drop curve
by Rothrock (1975),
MS—teardrop curve by
Morland and Staroszczyk
(1998),
CM—Coulomb–Mohr
straight lines. P is the
compressive strength of ice

Fig. 4.9 Elliptic yield curve
(solid line) with the ice
compressive strength P1
(stress point A) and the small
tensile strength P2 (point B),
and a smaller ellipse (dashed
line) describing stress states
in viscous flow

where σ1 and σ2 are the principal stress components, and e ≥ 1 defines the ellipse
eccentricity (the ratio of themajor to theminor axis lengths of the ellipse). In physical
terms, e defines the ratio of the maximum shear yield stress in the material to the
maximummean pressure: the larger value of the parameter e, the smaller is the shear
resistance of ice, with e → ∞ describing the cavitating fluid rheology.

Following Hibler (1977), it is assumed that sea ice during its yield (when the
stress lies on the yield curve) obeys a normal flow rule, implying that the principal
strain-rate vector is normal to the yield curve F(σ1,σ2). Hence, an associated flow
law is applied, expressed in the form:



www.manaraa.com

80 4 Sea Ice in Civil Engineering Applications

Di j = λ
∂F(σi j )

∂σi j

∣∣∣∣
F=0

, i, j = 1, 2, λ > 0, (4.42)

where λ is a function of strain-rate. It can be shown (Staroszczyk 2006) that the latter
function is given by the relation

λ = �

4(P1 + P2)
, (4.43)

with
�2 = η2 + 4γ2/e2, � ≥ 0. (4.44)

Since� is a function of two invariants η and γ, already defined by formulae (4.32) or
(4.34), it itself is an invariant of the strain-rate tensor D (recall that the dimensionless
rheological parameter e is a constant).

Substitution of the definition (4.43) for λ into the plastic flow rule (4.42), with
F(σ1,σ2) defined by the formula (4.41), gives expressions for the strain-rates in
terms of the stresses. Inversion of the latter expressions prescribes the stresses σi j in
terms of the strain-rates Di j . These relations, when set in the tensor form, give the
following frame-indifferent flow law:

σ = 2μD +
[
(ζ − μ)η − 1

2
(P1 − P2)

]
I, (4.45)

where the parameters ζ and μ are defined by

ζ = P1 + P2
2�

, μ = ζ

e2
= P1 + P2

2�e2
. (4.46)

Comparison of the viscous-plastic flow law (4.45) with the viscous fluid flow relation
(4.39) shows that the parameters ζ and μ can be identified as the bulk and shear vis-
cosities of ice, respectively, both being now functions of the ice strength parameters
P1 and P2 and the strain-rate invariant �.

The law (4.45), in conjunction with the viscosity definitions (4.46), describes
the behaviour of ice during plastic yield. The latter is assumed to occur when the
strain-rate invariant � reaches a certain critical value, denoted by �c; that is, plastic
deformations take place when � ≥ �c. Below the critical value, when � < �c, ice
is supposed to undergo viscous deformations, with constant (that is, independent of
the current strain-rates) viscosities ζ and μ. Following Hibler (1979), the magnitudes
of the latter two parameters are set to be equal to the viscosities at the onset of plastic
yield. Hence, on account of (4.46), they are defined by

ζm = P1 + P2
2�c

, μm = P1 + P2
2�ce2

. (4.47)
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The above parameters ζm and μm can be considered as the upper bounds on the vis-
cosities of sea ice. The critical level�c of the strain-rate invariant can be inferred from
in situ observations of the sea ice behaviour. A typical value is �c = 2 × 10−9 s−1

(Hibler 1979; Schulkes et al. 1998).
When sea ice pack deforms in the viscous regime, which occurs for� < �c, then,

following the idea of Ip et al. (1991), the ice strength parameters P1 and P2 must be
scaled down by a factor �/�c as follows:

P1 → �

�c
P1, P2 → �

�c
P2, � < �c , (4.48)

to avoid a physically unsound response, in which isotropic non-zero stress arises in
the ice pack in the absence of any deformation-rate. Therefore, two distinct relations
must be used to describe two distinct deformation regimes, plastic and viscous,
depending on the current strain-rate magnitude relative to its critical level:

σ =
{
2μD + [

(ζ − μ)η − 1
2 (P1 − P2)

]
I for � ≥ �c ,

2μmD +
[
(ζm − μm)η − 1

2
�
�c

(P1 − P2)
]
I for � < �c .

(4.49)

It can be shown that in the viscous flow, when � < �c, the stresses predicted by the
second equation (4.49) lie on an ellipse, the centre of which approaches the stress
origin, and the major and minor axes decrease monotonically to zero, as � → 0.
One such an ellipse is plotted in Fig. 4.9 (see the dashed line).

The constitutive model represented by Eq. (4.49) has four free parameters: P1 and
P2 defining, respectively, compressive and tensile strength of ice, �c prescribing the
critical strain-rate at which plastic yield starts, and e defining, through (4.46) and
(4.47), the ratio of the shear to bulk viscosities of ice.

4.2.2 Creep Buckling of Floating Ice

In Sect. 4.1 the mechanism of elastic buckling of a floating ice plate is considered.
It has been shown that this failure mechanism is possible to occur only in relatively
thin ice sheets, of thicknesses usually not exceeding 0.3–0.4m, depending on the
geometry of the plate and the type of boundary conditions at the ice–structure contact
zone (see Fig. 4.4 on p. 71). There is, however, a vast field evidence (Sanderson 1988)
that under certain conditions, in particular at very low horizontal velocities of the
floating ice cover, ice sheets significantly thicker than 0.5m, and sometimes even
more than 1.0m, are also susceptible to the out-of-plane buckling. Typically, during
lateArctic spring,when ice becomes softer andundergoes thermal expansion, buckles
form in floating ice sheets over the periods of up to several days, until tensile cracks
develop at the surface of ice, leading to its gradual failure. Similar buckle features
occur when ice is pushed against a vertical structure at very low loading levels.
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Certainly, the reason for such a behaviour of floating ice is its creep, which is sub-
stantial comparing with other materials encountered in civil engineering. At typical
stress levels of 1MPa, the time required for creep strains to exceed elastic strains in
ice is about one minute (Mellor 1980; Sanderson 1988). This clearly indicates that
not only elastic, but also, and first of all, creep (viscous) effects in ice must be taken
into account to properly determine realistic contact forces between floating ice and
an engineering structure. That is, the maximum forces occurring in ice during its
creep buckling must be found, as these are the forces which can be exerted by ice
on a structure. Relatively little research has been devoted to this topic so far (Sjölind
1985; Sanderson 1988), and this is limited to the problems of plates of a uniform
width.

Here an extension of the analyses carried out in the two latter papers is presented,
in which a floating plate having in the horizontal plane a shape of a truncated wedge
is considered. This is the same geometry as that adopted in Sect. 4.1 for analysing
the mechanism of the elastic buckling of ice (see Fig. 4.2 on p. 64). Accordingly, the
same Eqs. (4.1) to (4.7) from Sect. 4.1 are used to describe the equilibrium balances
of forces acting on the plate in the horizontal and vertical planes. The significant
difference is the constitutive description of the material: instead of the equations
of elasticity (4.10), the viscous flow law (4.39) is applied to express stresses in
ice in terms of deformation-rates. An important factor now is temperature, since the
viscosity of ice is strongly temperature-dependent, making thematerialmechanically
inhomogeneous across the plate thickness.

The equation of equilibrium of the ice sheet floating on water, under the combined
action of axial compression and bending, can be derived by the method analogous
to that described Sect. 4.1 for the case of the elastic response of ice. A simplified
form of this equation for a wedge-shaped plate is obtained by treating the latter as a
beam of its width varying with x . For the viscous behaviour of ice, the equilibrium
equation has the form (Staroszczyk and Hedzielski 2004):

Rb(x)
∂4ẇ

∂x4
+ P

∂2w

∂x2
+ �wgb(x)w = 0, 0 < x < ∞, (4.50)

where P = −Nb is the compressive force acting along the x-axis, and b(x) is the
varying plate width in the lateral y-direction. The quantity R describes the flexural
viscous behaviour of the ice plate and is defined by

R =
h∫

0

ζa(z) z (z − z0)dz, (4.51)

where ζa = μ + ζ denotes the axial viscosity of ice, with z0 denoting the position of
a neutral plane in the vertical cross-section of the plate. Comparison of Eq. (4.17) on
p. 66 with (4.50) shows that they differ only in the first term, in which, instead of the
elastic plate rigidity Dp, the parameter R is used, and instead of the plate deflection
w its time-derivative ẇ now appears.
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The temperature-dependence of the viscous properties of sea ice is described by
the three Eqs. (3.18) to (3.20) on p. 40, defining a dimensionless factor a(T ) (Smith
and Morland 1981) that is used to scale the viscosities with the ice temperature. For
instance, the change of ice temperature from −1 to −5 ◦C increases the ice viscosity
by a factor of about 3.5. Since temperature variations of such a magnitude are quite
usual in sea ice due to diurnal (24 h) cycles of heating and cooling, this clearly
indicates how substantially the creep properties of ice can change over relatively
short time scales. The solution of the heat conduction equation

∂T

∂t
= k

∂2T

∂z2
, (4.52)

where k = 1.15 × 10−6 m2 s−1 is the thermal diffusivity coefficient for ice, shows
that a free surface temperature perturbation during 24-h temperature cycles is atten-
uated by a factor of 10 at a depth of ice of about 0.4m (more rapid temperature
variations decay faster). Hence, it may be assumed that, typically, the daily temper-
ature changes affect only the upper layer of thick sea ice.

Before proceeding further, it is useful to realize an essential difference between the
mechanisms of elastic and creep buckling. Elastic buckling occurs instantly after a
critical load has been reached, and is followed by unstable failure of ice. In contrast,
creep buckling is a rather slow time-dependent process which occurs at any load
level, and leads to the failure of ice only if sufficiently large strain-rates (and hence
stresses reaching the flexural strength of ice) develop in the medium.

Analytical Results for a Uniform-Width Plate

In general, the solution of the ice plate equilibrium equation (4.50) for the plate
deflection w(x, t), with the variable coefficient b(x), is possible only by an approx-
imate method. An analytic solution is possible only in a particular case of a plate
of uniform width b(x) = b0, when (4.50) simplifies to the equation with constant
coefficients

Rb0
∂4ẇ

∂x4
+ P

∂2w

∂x2
+ �wgb0w = 0. (4.53)

Unlike elastic buckling, creep buckling requires an initial perturbation in the
plate deflection w; this perturbation will subsequently evolve under applied loading.
However, not any initial buckle w(x, 0) will grow with time under a given load level
P . In order to prove this, let re-write Eq. (4.53) in the form

Rb0
∂4ẇ

∂x4
= q(x, t), (4.54)

where

q(x, t) = −
(
P

∂2w

∂x2
+ �wgb0w

)
. (4.55)
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The expression q(x, t) in (4.54) can be treated as a transverse load depending on
the axial force P and the current plate deflection w(x, t). The existing deflection
will grow with time only if q(x, t) > 0, and, reversely, it will decay with time if
q(x, t) < 0; a stationary state, withw not evolving, occurs for q(x, t) = 0.Assuming
that (4.55) can be solved by the method of separation of variables, and adopting the
boundary conditions w(0, t) = 0 and ∂2w/∂x2(0, t) = 0 (a simply-supported plate
at its edge x = 0), a general solution for the plate deflection w can be expressed in
the form

w(x, t) = A(t) sin(πx/L), (4.56)

where A(t) is a time-dependent buckle amplitude, and L is an arbitrary half-
wavelength of a buckle. By substituting (4.56) into (4.55), a critical length of a
buckle half-wave, denoted by Lc, can be determined as:

Lc = π

√
P

�wgb0
. (4.57)

This critical length Lc determines the longest buckling half-wave, the amplitude of
which can increase with time. Any existing buckles of lengths L > Lc will decrease
with time, as long as P is not increasing.

The length of a buckle (for L < Lc ) affects the rate of growth of its current
amplitude. It is supposed here that the amplitudes A(t) of creeping buckles increase
in an exponential manner, that is

A(t) = w0 exp(t/τ ), (4.58)

where w0 is an initial small deflection amplitude of a given buckle, and τ is a time
constant. On inserting relation (4.58) into (4.56), and then substituting the resulting
expression for w(x, t) into the differential equation (4.53), the following relation is
obtained:

1

τ
= 1

R

[
P

b0

( L

π

)2 − �wg
( L

π

)4
]

, (4.59)

which describes the growth-rate parameter τ in terms of the buckle length L and
the axial load P . From among all possible perturbations of different lengths L , the
fastest growing is the one for which τ attains the minimum value. By differentiating
(4.59) with respect to L and setting it to zero, one can find that τ is minimized for
the buckle half-wavelength L0 given by

L0 = π

√
P

2�wgb0
. (4.60)
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The corresponding growth-rate parameter τ , obtained by substituting (4.60) into
(4.59), is expressed by

τ0 = 4R�wgb20
P2

. (4.61)

Like the critical buckle length Lc, the length L0 of the fastest-growing buckle depends
on the load magnitude P , but does not depend on the viscous properties of the ice
plate described by the parameter R. As the creep deformation of the plate develops
from its initial state with small perturbations of various lengths L , the buckle of the
half-wavelength L0, with the largest growth-rate defined by τ0, gradually becomes
the dominant buckling mode.

By comparing expressions (4.57) and (4.60) one can note that, independently of
the loading level P , the critical and dominant buckle half-wavelengths remain always
at a constant ratio given by

Lc

L0
= √

2 . (4.62)

Numerical Results for a Wedge-Shaped Plate

The fourth-order in space, and first-order in time, partial differential equation (4.50),
which describes the creep behaviour of a wedge-shaped floating ice sheet in response
to the compressive load P , has been solved numerically by applying a finite-element
method. Essentially, the same discretization scheme is used as that employed in
Sect. 4.1.2 for solving the problem of elastic buckling of a wedge-shaped plate.
Hence, linear finite elements are used for the discretization of the plate along the
x-axis, with the approximation method described by Eq. (4.23), and the element
shape functions given by (4.25). One significant difference is that now, instead of the
stiffness matrix K with components depending on the elastic flexural rigidity Dp,
as defined by Eq. (4.27), a similar in structure damping matrix is formed, with its
components depending on the parameter R involving the ice viscosity. The details
are omitted here; they will be addressed in the next Sect. 4.2.4, devoted to the finite-
element solution of a fully two-dimensional problem of creep behaviour of a floating
ice sheet.

In numerical simulations, 400 finite elements of the same length, equal to 1.5 h,
were used. Thus, the behaviour of a semi-infinite plate was approximated by the
plate of the finite length of 600 h. The axial viscosity of ice at the melting point was
adopted to be ζa = 1 × 1011 kgm−1 s−1. The results presented below were obtained
for ice temperature equal to −2 ◦C at the top surface, and 0 ◦C at the bottom surface
of the plate, with the ice viscosities adjusted accordingly across the plate depth
to account for the temperature dependence of creep properties of ice. The elastic
constants, Young’s modulus E and Poisson’s ratio ν, were equal to 9.0GPa and
0.31, respectively (theywere needed to evaluate themagnitude of the elastic buckling
force, Pe, for the plate). The flexural strength of icewas assumed to beσ f = 0.2MPa,
corresponding to the ice of about 10% porosity.
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The initial perturbed small deflection of the plate was adopted as a sum of twenty
harmonic components, given by

w0(x) =
20∑
i=1

±w
(i)
0 sin

(
iπx

L

)
, (4.63)

where the signs (±) were selected at random, and all the component amplitudes
w

(i)
0 were equal and such that the maximum initial deflection was w0 = 0.001m. L ,

defining the length of the longest initial perturbation, was chosen to be three times
the length L0 of the dominant buckle half-wavelength for a plate of uniform width.
In this way, the initial deflection w0(x) includes two components which are longer
than the critical half-wavelength Lc determined by (4.57). In the simulations, the
value of the compressive load P exerted on the floating plate was normalized by the
magnitude of the force Pe causing elastic buckling of the plate; the latter force was
calculated by using the method presented in Sect. 4.1.

Figure 4.10 illustrates the time variation of the deflection w(x, t) of the plate
of a unit width and the thickness h = 0.2m, subjected to the compressive axial
force P = 0.1 Pe. The plots show how the plate vertical displacements, plotted at
the intervals of 1.25 h (hours), gradually evolve from the initial, random distribution
of small perturbations, into a regular pattern which, with increasing time, is more
and more dominated by the buckling mode of the length L0 defined by (4.60). The
evolution of the plate deflection w(x, t) from its initial state, prescribed by (4.63),
is followed up to the time tc, called the critical time, at which the tensile stress at
any point in the plate exceeds the value of the ice flexural strength σ f and the plate
begins to fail due to the propagation of tensile cracks. The deflection of the plate
at the critical time t = tc = 10.55 h is plotted in Fig. 4.10b by the solid line. We
note that the maximum deflections w(x, tc) at the onset of the plate failure are equal
to about h/2. For comparison, the results of the analytic solution, indicated by the
solid circles, are also presented in Fig. 4.10b to demonstrate the accuracy of the
finite-element solution.

Figure 4.11 illustrates the effect of the in-plane axial load magnitude P/Pe on the
ice displacement at the failure times tc. The results, obtained for the plate of a unit
width and the thickness h = 0.2m, show that while the maximum plate deflections
w(x, tc) decrease by a factor of about two with a fourfold increase in the load level,
the values of the critical time at which the ice cover starts to fail change with the
normalized load very substantially, decreasing by a factor of about 18 for the same,
fourfold increase in loading.

The values of the critical time tc required to fail a floating ice sheet due to its
creep deformation started from initial, small-amplitude imperfections, are plotted in
Figs. 4.12 and 4.13 as functions of the angle α defining the in-plane geometry of the
truncated wedge (see Fig. 4.2 on p. 64). Fig. 4.12 illustrates, for the structure width
b0 = 10m and the ice cover thickness h = 0.2m kept constant, the dependence
of the critical time tc on the normalized axial load P/Pe (the corresponding plate
deflections for selected ratios P/Pe and α = 0 are shown in Fig. 4.12).
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Fig. 4.10 Evolution of the deflectionw(x, t) of a uniform-width plate of thickness h = 0.2m under
the axial load P/Pe = 0.1: a for t ≤ 7.5 h, b for t ≥ 7.5 h. The solid circles in (b) show the results
of the analytic solution for the critical time t = tc = 10.55 h. Reprinted from Staroszczyk and
Hedzielski (2004), Fig. 2, with permission of the Institute of Fundamental Technological Research
of the Polish Academy of Sciences

Figure 4.13 displays, at the constant load P/Pe = 0.1, the variation of tc for
different plate thicknesses h. One can note that for thinner ice plates the values of the
critical time initially slightly increase with the increasing angle α, while for thicker
ice the values of tc decrease monotonically with α.

More results obtained by the discrete method described above and illustrating
the mechanism of ice creep buckling can be found in the paper by Staroszczyk and
Hedzielski (2004).
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Fig. 4.11 Deflection of a uniform-width plate at the critical time t = tc (expressed in hours) as a
function of the normalized load P/Pe, for the ice thickness h = 0.2m. Reprinted from Staroszczyk
and Hedzielski (2004), Fig. 3, with permission of the Institute of Fundamental Technological
Research of the Polish Academy of Sciences

Fig. 4.12 Variation of the
critical time tc (given in
hours) with the angle α and
the normalized axial load
P/Pe, for the ice thickness
h = 0.2m and the structure
width b0 = 10m. Reprinted
from Staroszczyk and
Hedzielski (2004), Fig. 5,
with permission of the
Institute of Fundamental
Technological Research of
the Polish Academy of
Sciences
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4.2.3 Ice Plate Failure Due to Its Thermal Expansion

In the preceding part of this section itwas tacitly assumed that the in-plane axial forces
N (and hence P) which caused the creep buckling of floating ice were generated by
stresses arising on the ice surface due to the action of wind. Further, it was assumed
that the temperature of ice did not change during the process of ice creep; that is,
the properties of ice (in the first place its viscosity) which depend on temperature
remained constant in time. Now we proceed to the problem in which the forces
driving the creep buckling of floating ice are of a different origin—they are caused
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Fig. 4.13 Variation of the
critical time tc (given in
hours) with the angle α and
the ice thickness h, for the
normalized load P/Pe = 0.1
and the structure width
b0 = 10m. Reprinted from
Staroszczyk and Hedzielski
(2004), Fig. 6. Copyright by
the Institute of Fundamental
Technological Research of
the Polish Academy of
Sciences
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by the phenomenon of thermal expansion of ice due to its heating at the free surface
of the ice cover. In order for such buckling force to develop in ice, the latter must be
somehow constrained in the lateral (horizontal) directions. It is assumed here, that the
lateral deformation of ice is prohibited by vertical, rigid walls representing elements
of an engineering structure. Certainly, of the main interest are then the magnitudes
of the forces exerted by ice on the constraining walls, and the evolution of these
forces as the ice creep deformation progresses until the instant of the ice failure due
to its flexural fracture. The evolution of the thermally-induced forces within the ice
plate is not only due to the rise in temperature at the ice top surface, but also due to
the vertical heat transfer through the ice cover from its top to the bottom. The latter
process results in the variation, in time and space, of the elastic and viscous properties
of the material; therefore, the plate of ice cannot be treated as a homogeneous, since
its mechanical properties vary with depth.

Thermal Creep Plate Buckling Problem Formulation

The problem under consideration is sketched in Fig. 4.14. As previously, the floating
ice cover is idealized by a plate of uniform thickness h. The lateral span of the plate
is denoted by L , and is equal to the distance between the two constraining vertical
walls at the ends of the plate. It is assumed that the top surface of ice is subjected to
the action of varying in time temperature T (t), with the ice at the base (z = h) being
at the melting point temperature Tm at all time, and T < Tm throughout the ice plate.
It is also assumed that at the initial time t = 0 the plate is stress-free; that is, it is in
equilibrium under an initial distribution of temperature in the plate. For simplicity,
a plane-strain problem is analysed, so that the ice plate can be treated as a beam of
uniform width, with its elastic flexural rigidity adjusted accordingly to account for
the zero deformations in the direction normal to the plane Oxz.

All the equations describing the ice plate buckling problem are essentially those
presented earlier in this section. Again, the viscous behaviour of ice is assumed to
obey the Reiner-Rivlin-type constitutive law (4.39) on p. 77 (with the Heaviside



www.manaraa.com

90 4 Sea Ice in Civil Engineering Applications

Fig. 4.14 Floating ice plate
of thickness h and span L
constrained by vertical rigid
walls at its ends

function term H(−η) omitted, since a single, continuous ice floe, not an ice pack, is
now considered). Then, the equilibrium equation (4.53), for a plate of unit width b0,
becomes

R
∂4ẇ

∂x4
+ P

∂2w

∂x2
+ �wgw = 0, (4.64)

where the parameter R, defining the viscous flexural ‘rigidity’ of the plate, is given
by Eq. (4.51) which involves the axial viscosity ζa = μ + ζ being strongly sensitive
to temperature. The above differential equation for the plate deflection curve w(x, t)
is solved with the boundary conditions at the plate edges at x = 0 and x = L rep-
resenting the case of a simply-supported plate, as being regarded (Sanderson 1988)
as the most realistic conditions encountered in the field. Thus,

x = 0 : w = 0,
∂2w

∂x2
= 0; x = L : w = 0,

∂2w

∂x2
= 0. (4.65)

The initial condition for the function w(x, t) is prescribed by assuming that the plate
deflection w0(x) at t = 0 consists of a number of small-amplitude, harmonic in x
perturbations:

w0(x) =
m∑

k=1

±A0
k sin

(
kπx

L

)
, (4.66)

where them component initial amplitudes A0
k and their signs (±) are selected at ran-

dom. The number of components m is such that the shortest buckle half-wavelength
is of order 1m.

Besides the plate deflection evolution Eq. (4.64), also a heat conduction equation
(4.52) on p. 83 which governs the evolution of the temperature field T (z, t) in ice
must be solved. The solution of that equation provides current vertical distributions of
ice temperature, which in turn determine the current vertical distributions of elastic
and viscous parameters of ice. The boundary conditions for the temperature field
are prescribed at the top, z = 0, and the bottom, z = h, surfaces of the ice plate.
At z = 0 a time-varying temperature distribution T (0, t) is adopted to represent the
ice heating conditions, whereas at z = h it is assumed that the temperature of ice is
constant and equal to the melting point, that is T (h, t) = Tm . Further, it is assumed
that at the time t = 0 the temperature along the ice depth varies linearly between the
initial top surface temperature T0(0) and the bottom surface temperature Tm .
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In contrast to the problem considered in Sect. 4.2.2 in which the axial force
P was treated as independent in time during the ice creep buckling process, now
this force is time-dependent, since the elastic response of the constrained ice to the
changing temperature field evolves as the ice heating progresses. The axial force
P(t) is defined by

P(t) = α

h∫

0

�T (z, t)
E(z, T )

1 − ν2(z, T )
dz, (4.67)

whereα = 5.2 × 10−5 K−1 is the thermal expansion coefficient for ice. The quantity
�T (z, t) describes the difference between the current local temperature T (z, t) and
the initial local temperature T0(z) at the stable (stress-free) state of the plate. The
force P(t) given by (4.67) cannot exceed the force P0 causing the instantaneous
elastic buckling of the plate, which is given by Kerr (1978)

P0 = 2
√

�wgDp , (4.68)

where the temperature-dependent plate elastic flexural rigidity Dp is

Dp =
h∫

0

(z − z0)
2 E(z, T )

1 − ν2(z, T )
dz. (4.69)

In order to describe the temperature-dependenceof the elastic constants, theYoung
modulus E and the Poisson ratio ν, the relations given in Chap. 3 are used. Hence,
relation (3.2) on p. 34 is adopted to describe the function E(T ) for granular T1 ice,
and relation (3.7) is employed for the function ν(T ). The temperature-dependence of
the ice viscous properties, μ and ζ, is, in turn, described by relations (3.18) to (3.20)
on p. 40 due toMorland (1993, 2001); the same temperature scaling is applied to both
shear and bulk viscosities. It is assumed here that the ice is porous. The degradation
of the elastic properties with increasing ice porosity is described by formulae (3.9)
on p. 36 due to Hutter (1983). Because of the lack of relevant data, it is supposed that
the ice viscosity magnitudes μ and ζ are reduced for porous ice in the same manner
as E ; that is, by applying (3.9) with μ and ζ replacing E in the formulae. Finally, the
weakening effect of ice porosity on the ice flexural strength σ f is taken into account.
For this purpose, relation (3.33) on p. 48 proposed by Timco and O’Brien (1994) is
applied.

Results of Numerical Simulations

The differential equation (4.64) describing the evolution of the plate deflection sur-
face w(x, t) can be solved by either the analytical method for a uniform-width plate,
or by a more general finite-element method for a wedge-shaped plate; both methods
are described in the precedingSect. 4.2.2.Anenhanced analyticalmethod is discussed
by Staroszczyk (2018). In the calculations, the following material parameters were
adopted: Young’smodulus E (T = 0 ◦C) = 8.93GPa, Poisson’s ratio ν = 0.308, ice
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porosity φb = 0.05, ice viscosities μ = 1 × 1011 Pa ·s and ζ = 2 × 1011 Pa ·s, the
ice flexural strength σ f = 0.47MPa (at φb = 0.05) and the ice compressive strength
σc = 5MPa. The sea water density was assumed to be �w = 1020 kgm−3 and its
freezing temperature was Tm = −1 ◦C (a compromise value between Tm = 0 ◦C for
freshwater and Tm = −1.9 ◦C for ocean water of salinity 35 ppt). The ice thickness
h and the plate length L were adopted of magnitudes typical of civil engineering
applications.

The numerical simulations were run for a series of idealized sinusoidal ice surface
temperature scenarios depicted in Fig. 4.15. The ice temperature T at the start of
calculationswas assumed to be equal to T0, themaximum temperature reached during
the daytime heating was Tmax (supposed to be below the ice melting temperature
Tm), and the minimum temperature at night was Tmin . The results presented below
were obtained for T0 ≥ −5 ◦C and �Tmax = Tmax − T0 ≤ 4 ◦C. For such moderate
daily temperature increases, the maximum thermally-induced axial elastic force P
determined from (4.67) was equal to around 1/3 of the magnitude of the elastic
buckling force P0 calculated from (4.68).

The temperature distribution along the ice plate depth was calculated by solving
the heat conduction equation (4.52) by a finite-difference method, with the time
integration performed by applying a Crank-Nicolson scheme. An example evolution
of temperature depth profiles calculated by solving (4.52) for a plate of thickness
h = 0.3m is illustrated in Fig. 4.16. These profiles were obtained by adopting in
the temperature scenario shown in Fig. 4.15 the values T0 = −5 ◦C and �Tmax =
4 ◦C, and for the day (heating period) lasting for 9 h. The solid lines in the figure
illustrate the ice warming phase (increasing temperature period), and the dashed lines
illustrate the cooling phase (decreasing temperature period), with the same colours
corresponding to the same ice temperature at the upper surface of ice.

Fig. 4.15 Time variation of temperature T (t) (time is given in hours) at the ice top surface z = 0.
T0 is the temperature at t = 0 (the start of simulations), Tmax is the maximum temperature during
the daytime, and Tmin is the minimum temperature at night
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Fig. 4.16 Time variation of depth profiles of ice temperature T (z) across a floating plate of thick-
ness h = 0.3m, for an initial temperature at the top surface of the plate T0 = −5 ◦C and a daily
temperature increase �Tmax = 4 ◦C. Reprinted with permission from Staroszczyk (2018), Fig. 3.
Copyright 2018 by Elsevier

Fig. 4.17 Initial perturbed plate deflection curve w0(x) as a superposition of 20 harmonic com-
ponents A(k)

0 sin(kπx/L) with random amplitudes, for the plate of thickness h = 0.2m and length
L = 20m

The initial perturbed ice plate deflection curve, see Eq. (4.66), which was adopted
for the plate of length L = 20m and thickness h = 0.2m is shown in Fig. 4.17. This
curve was obtained by assuming m = 20 harmonic components, with the randomly
selected component amplitudes scaled in such a way that the maximum initial plate
deflection was equal to 1/100 of the ice thickness.

The plots in Fig. 4.18 show the shapes of the plate deflection curves at the failure
time for different maximum temperature amplitudes �Tmax . The presented results
illustrate the creep response of the plate of length L = 20m and thickness h = 0.2m,
for�Tmax = 3, 4 and 5 ◦C; smaller values of�Tmax do not generate sufficiently large
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Fig. 4.18 Plate deflection curves w(x) at corresponding failure times t = t f for different temper-
ature amplitudes �Tmax , for the plate of thickness h = 0.2m and span L = 20m. Reprinted with
permission from Staroszczyk (2018), Fig. 7. Copyright 2018 by Elsevier

Fig. 4.19 Evolution of the horizontal force P(t) exerted by ice on the rigid walls for different
values of the maximum temperature increase �Tmax , for the plate of thickness h = 0.2m and span
L = 20m. Reprinted with permission from Staroszczyk (2018), Fig. 9. Copyright 2018 by Elsevier

stresses needed to fail the ice sheet. One can see that the creep behaviour of the plate,
and in particular the length and the shape of the buckles, is similar for all the cases
plotted in the figure, with the maximum plate deflections increasing monotonically
with increasing temperature amplitudes. The corresponding values of the failure time
ranged from about 4.5 h for �Tmax = 3 ◦C to about 3 h for �Tmax = 5 ◦C, see also
the next figure.

The curves displayed in Fig. 4.19 show the dependence of the ice–wall reaction
force P(t) on the temperature amplitude �Tmax , for the ice of thickness h = 0.2m.
The lines illustrating the evolution of P(t) break at the corresponding ice failure
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Fig. 4.20 Variation of the horizontal compressive force P with the plate thickness h for different
temperature increase amplitudes �Tmax , on the assumption that the plate does not fail. Reprinted
with permission from Staroszczyk (2018), Fig. 10. Copyright 2018 by Elsevier

time instants, except the cases �Tmax = 1 and 2 ◦C when the ice does not fracture
during the heating period 0 < t < 9 h. As can be expected, an increase in the ice
temperature-rate results in the ice failure occurring at earlier time. It can be noted
that prior to the failure time the reaction force P increases in a smooth monotonic
manner.

Finally, Fig. 4.20 illustrates the dependence of the maximum reaction forces P on
the ice plate thickness h and the temperature increase amplitude �Tmax , calculated
on the assumption that no plate flexural failure occurs. The results plotted in Fig. 4.20
represent themaximummagnitudes of the compressive forces P which, at given h and
�Tmax , can theoretically develop in an ice sheet due to its heating. For safety reasons,
the presented maximum forces should be adopted by an engineer as design loads on
a structure that can be subjected to the action of floating ice. It is seen that the forces
displayed in the figure are approximately proportional to the maximum temperature
increase �Tmax . Their increase with the plate thickness is most pronounced for
h � 0.5m, whereas for thicker ice the thermally-induced axial forces caused by
daily temperature variations do not significantly exceed those for h ∼ 0.5m.

The results of calculations presented above show that a moderate temperature
increase by a few degrees Celsius during a period of a few hours can lead to the
fracture of a floating ice plate of thickness up to about 0.5m. The thermally-induced
forces exerted by floating ice on the walls constraining its lateral deformation can be
of the magnitudes of several hundred kN per unit width of the ice plate. For instance,
for the ice of thickness 0.5m and a daily peak temperature increase by 5 ◦C, the
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maximum ice–structure reaction force predicted in the numerical simulations was
equal to about 350 kN/m. More results illustrating the mechanism of floating ice
creep buckling due to the phenomenon of thermal expansion of ice can be found in
the paper by Staroszczyk (2018).

4.2.4 Plane Ice–Structure Interaction Problem

In Sect. 4.2.2, the creep behaviour of a floating ice sheet is analysed under the
assumption that the ice sheet has a wedge-shaped geometry in the Oxy plane and the
problem is symmetric with respect to the x-axis. This, in fact, simplifies the problem
to a one-dimensional in the horizontal plane. Now a fully two-dimensional problem
is considered, without introducing any simplifications regarding the planar geometry
of an ice sheet.

Governing Equations

The equations of the floating ice plate equilibrium in the horizontal and vertical
planes, together with the definitions of internal forces (in-plane axial and shear forces
and bending and twistingmoments) in terms of stresses have already been formulated
in Sect. 4.1.1, see relations (4.1) to (4.7) (also refer to Fig. 4.1 on p. 61). In the case
of the creep deformations of ice, the stresses are expressed in terms of strain-rates,
see the constitutive relations discussed in Sect. 4.2.1. Here we focus on solving the
plane problem in which the creep of ice is described by the viscous fluid rheological
model, expressing the stresses in terms of strain-rates by the flow law (4.39) on p. 77.
We note, however, that the methodology of constructing a solution for the viscous-
plastic rheology, due to the formal similarities between the laws (4.39) and (4.49) on
p. 81, is not much different from that described below for the viscous fluid rheology.

When expressed in components in theCartesian coordinate planeOxy, the viscous
fluid flow law (4.39) takes the form:

σi j = [
(ζ − μ)Dkkδi j + 2μDi j

]
H(−η) (i, j, k = 1, 2), (4.70)

where the summation convention applies for a repeated suffix. Recall that in (4.70) ζ
and μ denote the bulk and shear viscosities, respectively, and Di j are the components
of the two-dimensional strain-rate tensor D, see definition (4.31). The subscripts i
and j stand for either x and y, with the equivalence x1 = x and x2 = y.

Deformations in the ice cover can be expressed as a sum of the deformations in
the neutral plane of the plate caused by the forces Ni j , and these can be regarded
as functions of the horizontal coordinates x and y alone, and the deformations due
to bending and twisting of the plate, which are functions of the depth z as well.
Accordingly, the in-plane strain-rates are determined by using the horizontal velocity
components vx (x, y) and vy(x, y) in (4.31), while the strain-rates due to bending and
twisting of the plate are given in terms of the curvatures and twist of the deflection
surface w(x, y) as follows



www.manaraa.com

4.2 Interaction of Creeping Ice with a Structure 97

Dxx = κ̇x (z − z0) = −∂2ẇ

∂x2
(z − z0),

Dyy = κ̇y(z − z0) = −∂2ẇ

∂y2
(z − z0),

Dxy = −κ̇xy(z − z0) = − ∂2ẇ

∂x∂y
(z − z0).

(4.71)

In these equations, κx and κy are the curvatures of the deflection surface along the
x and y axes, respectively, κxy is the twist with respect to the x and y axes, and z0 is
the position of the neutral plane in the undeformed state. With the strain-rates given
by (4.31) and (4.71), and the stresses determined through the constitutive law (4.70),
the in-plane axial and shear forces (4.6) become

Nx = (H1 + H2)
∂vx

∂x
+ (H1 − H2)

∂vy

∂y
,

Ny = (H1 − H2)
∂vx

∂x
+ (H1 + H2)

∂vy

∂y
,

Nxy = H2

(
∂vx

∂y
+ ∂vy

∂x

)
,

(4.72)

and the bending and and twisting moments (4.7) are given by

Mx = −
[
(R1 + R2)

∂2ẇ

∂x2
+ (R1 − R2)

∂2ẇ

∂y2

]
,

My = −
[
(R1 − R2)

∂2ẇ

∂x2
+ (R1 + R2)

∂2ẇ

∂y2

]
,

Mxy = 2R2
∂2ẇ

∂x∂y
.

(4.73)

In the above expressions for the internal forces, the parameters defining the plate
viscous properties are given by

H1 =
h∫

0

ζdz, H2 =
h∫

0

μdz, R1 =
h∫

0

ζz(z − z0)dz, R2 =
h∫

0

μz(z − z0)dz.

(4.74)

For the sake of brevity of the notations, it is tacitly assumed henceforth in this chapter
that the Heaviside unit step factor H(−η) is included in the viscosity terms ζ and μ.

By substituting now the definitions (4.73) for the internal moments into the equi-
librium relation (4.5), we obtain the following differential equation
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R

(
∂4ẇ

∂x4
+ 2

∂4ẇ

∂x2∂y2
+ ∂4ẇ

∂y4

)
= Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
+

− �wgw − τx
∂w

∂x
− τy

∂w

∂y
,

(4.75)

with the definition

R = R1 + R2 =
h∫

0

ζaz(z − z0)dz, (4.76)

where ζa = μ + ζ is the axial viscosity. Equation (4.75) describes the time and space
variation of the plate deflectionw in terms of the in-plane forces Ni j and the external
driving forces τi (i, j = 1, 2). The forces Ni j , the functions of the plate horizontal
velocities vx and vy as given by (4.72), can be determined independently of (4.75)
by solving the equations of the in-plane equilibrium (4.1).

The driving forces τi are due towind andwater drag on the top and bottom surfaces
of ice. In this work, formulae that are quadratic in velocities are adopted to describe
these drag forces in terms of the ice, wind and water velocities. Hence, the surface
tractions are expressed in the following forms (Sanderson 1988) :

τ a = Ca�a(ua − v)|ua − v|, τw = Cw�w(uw − v)|uw − v|, (4.77)

where �a and �w are, respectively, the air and water densities, and ua and uw are,
respectively, the wind and ocean current velocity vectors. The parametersCa andCw

in relations (4.77) denote dimensionless wind stress and water drag coefficients. On
the basis of the data presented in the literature (Sanderson 1988; Kara et al. 2007;
Lu et al. 2011), the values Ca = 2 × 10−3 and Cw = 4 × 10−3 have been adopted
for numerical simulations.

Typical boundary conditions, with which the three Eqs. (4.75) and (4.1) are solved
in sea ice applications, are those of a simply-supported plate edge at the contact region
with the structure, with zero horizontal velocities in the direction normal to the ice-
structure interface (so-called free-slip conditions). These conditions are expressed by

w = 0, Mn = 0, v · n = 0, (4.78)

where n is the direction normal to the edge of the plate, defined by the outward unit
vector n, and Mn is the bending moment acting on the plate section normal to n.

Finite-Element Formulation

The system of three differential equations for the ice plate deflection w and the
horizontal velocities vx and vy , given by (4.75) and (4.1) with (4.72), is solved
approximately by applying the finite-element method. The weighted residual, or
Galerkin, version of themethod is employed. The plate is discretized in the horizontal
plane Oxy by using a mesh of triangular elements, with the unknown variables
defined at the corner nodes. At each discrete node, apart from the two horizontal
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velocities, vx and vy , and the plate vertical displacement,w, also the two plate slopes,
∂w/∂x and ∂w/∂y, are treated as unknown variables. Such an approach is typical of
the plate theory and is applied in order to ensure the continuity of the plate deflection
surface along the sides of the adjacent elements (Zienkiewicz andTaylor 2005). Thus,
there are five discrete parameters to be calculated at each node, so altogether there
are 15 degrees of freedom per each triangular element. The continuous functions w,
vx and vy are approximated by the following representations:

w(x, y, t) = �w
j (x, y)w j (t), ( j = 1, . . . , 9),

vi (x, y, t) = �v
j (x, y)vi j (t), (i = 1, 2; j = 1, 2, 3),

(4.79)

where w j and vi j are the unknown nodal parameters, the displacements and the
velocities respectively, with the former including both the plate deflections and the
plate slopes.�w

j and�v
j are shape functions, which are different for the displacement

and the velocity fields. While the velocity field is interpolated by simple linear shape
functions, for the plate deflection approximation fourth-order polynomials in both x
and y are used, following the formulation due to Specht (1988).

By applying a typical finite-element procedure for so-called weak formulations
of the problem equation, in which the latter are multiplied by weighting functions
(which in the Galerkin method are identical to the shape functions �w

j and �v
j ).

Integration of the resulting relations (Staroszczyk 2003) reduces the problem defined
by Eqs. (4.75), (4.1) and (4.72) to the solution of a system of first-order differential
equations given in a matrix form by

Cẇ + Kw = f , (4.80)

where the vector w includes the values of the plate deflections w j , the plate slopes
(∂w/∂x) j and (∂w/∂y) j , and the velocities vx j and vy j at all nodal points j of the
discrete system. We note that the matrix K depends on the horizontal velocities,
so K = K (w), which means that the system of Eqs. (4.80) is non-linear in w. The
matrices C, K and the forcing vector f are aggregated from the respective element
matrices and vectors in away characteristic of the finite-elementmethod. The element
matrices, Ce and K e, each of size 15 × 15, are, in turn, composed of 9 submatrices
of dimension 5 × 5 each. The non-zero entries in these component submatrices are
given for the matrix C by

cmn
rs =

∫

A

[
(R1 + R2)

(
∂2�w

i

∂x2
∂2�w

j

∂x2
+ ∂2�w

i

∂y2

∂2�w
j

∂y2

)
+

+ 4R2
∂2�w

i

∂x∂y

∂2�w
j

∂x∂y
+ (R1 − R2)

(
∂2�w

i

∂x2
∂2�w

j

∂y2
+ ∂2�w

i

∂y2

∂2�w
j

∂x2

)]
dA, (4.81)
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and for the matrix K they are

kmn
rs =

∫

A

�w
i

(
�wg�w

j + τx
∂�w

j

∂x
+ τy

∂�w
j

∂y
+

− Nx

∂2�w
j

∂x2
− 2Nxy

∂2�w
j

∂x∂y
− Ny

∂2�w
j

∂y2

)
dA,

k44rs =
∫

A

[
(H1 + H2)

∂�v
r

∂x

∂�v
s

∂x
+ H2

∂�v
r

∂y

∂�v
s

∂y

]
dA,

k45rs =
∫

A

[
(H1 − H2)

∂�v
r

∂x

∂�v
s

∂y
+ H2

∂�v
r

∂y

∂�v
s

∂x

]
dA,

k54rs =
∫

A

[
H2

∂�v
r

∂x

∂�v
s

∂y
+ (H1 − H2)

∂�v
r

∂y

∂�v
s

∂x

]
dA,

k55rs =
∫

A

[
H2

∂�v
r

∂x

∂�v
s

∂x
+ (H1 + H2)

∂�v
r

∂y

∂�v
s

∂y

]
dA.

(4.82)

The indices in (4.81) and (4.82) are

r, s,m, n = 1, 2, 3, i = 3(r − 1) + m, j = 3(s − 1) + n, (4.83)

and A denotes the plane domain of integration. The components of the forcing vector
f are given by

f mr =
∮

�

�w
i QdΓ,

f 4r =
∫

A

�v
r τxdA +

∮

�

�v
r TxdΓ,

f 5r =
∫

A

�v
r τydA +

∮

�

�v
r TydΓ,

(4.84)

where Γ denotes the boundary of the domain A. In the first of the above equations, Q
is the vertical shear force acting on the boundary Γ , and Tx and Ty are, respectively,
the x- and y-components of the in-plane traction vector T acting on Γ , and are
defined by

Tx = Nxnx + Nxyny, Ty = Nxynx + Nyny, (4.85)

with nx and ny being the components of the outward unit vector n normal to the
boundary Γ .
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The system of equations (4.80) is integrated in time by applying an implicit
weighted residual θ-method (Zienkiewicz et al. 2005). Application of this method
gives the relationship that connects the solution vectors wn and wn+1 at two consec-
utive time levels, tn and tn+1:

(C + θ�tK )wn+1 = [C − (1 − θ)�tK ]wn + �t f̄ , (4.86)

where �t = tn+1 − tn is the time-step length. The vector f̄ is the time-averaged
forcing vector which, assuming a linear variation of f from tn to tn+1, is defined by

f̄ = (1 − θ) f n + θ f n+1. (4.87)

In numerical calculations, the value of θ = 0.6 has been adopted, for which the
method is unconditionally stable, and which guarantees that the time-discretization
error is nearly of the order (�t)2.

Ice–Structure Interaction Simulations

Before applying the above-described finite-element model to simulate a plane ice–
structure interaction event, the discrete model was tested on a one-dimensional
problem, for which a closed-form analytical solution is available, as described in
Sect. 4.2.2. Hence, the model was run for a uniform-width plate undergoing creep
buckling under the action of a in-plane compressive horizontal force, with the initial
plate deflection consisting of a number of small harmonic perturbation of various
lengths and random amplitudes, see Eq. (4.63) on p. 86. It turned out (Staroszczyk
2003) that the finite-element predictions were in a very good agreement with the
analytical results (the maximum relative error in the plate deflections given by the
two methods was less than 3%).

After the successful verification of the accuracy of the discrete model in the one-
dimensional configuration, a two-dimensional problem sketched in Fig. 4.21 was
solved, in which the behaviour of a coherent floating ice cover interacting with a
rigid structure, the horizontal cross-section of which has the shape of a rectangle of

Fig. 4.21 A rectangular
rigid structure of horizontal
dimensions a × b interacting
with sea ice driven by wind
blowing at the angle α to the
x-axis x

y

a

b

wind direction
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dimensions defined by a and b. The ice cover was assumed to be driven towards the
structure by air drag forces caused by a wind blowing in the direction defined by the
angle α shown in the figure.

The simulations were carried out for a rigid structure situated at the centre of a
rectangular in shape coherent ice field of the size 1 km × 1 km and the ice thick-
ness h = 0.5m. At the ice–structure interface, the plate was assumed to be simply-
supported, and the free-slip boundary conditions, prescribed, by (4.78),were adopted.
The wind had a speed ua = 30m s−1, and its direction has been varied within the
range 0 < α < 90◦ in order to investigate how this affects the total loading exerted
by the ice on the structure. Three particular cases of the structures of different
shapes were considered, in which the width of the structure b was kept constant
and equal to 10m, and the length a was varied and equal to 20, 30 and 40m, respec-
tively. The results of numerical calculations, conducted with the mesh consisting
of 4000 triangular finite elements and 10,400 degrees of freedom, are presented in
Fig. 4.22. The results shown in the figure have been obtained for the ice viscosities
ζ = μ = 1.0 × 109 kgm−1s−1. The temperature at the top surface of the ice was
assumed to be equal to −2 ◦C, and that at the bottom surface to be 0 ◦C.

The plots illustrate the dependence of the magnitude of the total horizontal force
F exerted by the ice on the structure on the wind direction angle α. Also shown are
the components of the total force along the x and y axes, Fx and Fy respectively.
The results obtained for the rectangle 20m × 10m are indicated by the solid lines,
those for the rectangle 30m × 10m are given by the dashed lines, and those for the
longest rectangle 40m × 10m are shown by the dashed-dotted lines. One can see
in the figure that the geometry of the structure cross-section has a relatively small
effect on the total force F sustained by the object during its interaction with creeping
ice. Further, a rather small influence of the wind direction on the total force F is also
noted. For the structure for which a/b = 4, the maximum and minimum forces, for
α = 90◦ and α = 0◦ respectively, differ by about 20%, while for the structure, for
which a/b = 2, the corresponding relative difference is about 10%. The results of a

Fig. 4.22 Total horizontal
forces F , together with their
components Fx and Fy ,
exerted on the structure by
the ice cover as a function of
the wind direction angle α.
Shown are the results for
three rectangles of the same
width b = 10m and the
lengths 20m (solid lines),
30m (dashed lines) and 40m
(dashed-dotted lines)
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Fig. 4.23 Plate deflections w along the x-axis at the critical times t (given in hours) for the wind
direction angleα = 180◦. Shown are the results for the plates of thickness h = 0.2m and h = 0.5m
(solid lines); for the thicker plate also the deflections and corresponding critical times for colder ice
(dashed line) and the ice with larger shear and bulk viscosities (dashed-dotted line) are presented

similar character, that is showing a relatively small effect of the wind angle α on the
total force acting on a structure, have been also obtained for other thicknesses of the
ice cover.

Figure 4.23 illustrates the ice plate deflections in the vicinity of the structure
vertical wall. The results plotted in the figure have been obtained for the structure
dimensions a = 20m and b = 10m, and for the wind blowing along the negative
direction of the x-axis (that is for the angle α = 180◦, see Fig. 4.21). Plotted are
the plate deflection curves along the positive x-axis at the critical times at which the
process of flexural failure of ice starts (the origin of the x-axis is on the structure
vertical wall; that is, it is shifted to the right by a/2 compared to Fig. 4.21). The two
solid lines in the figure illustrate the plate deflections for two different thicknesses
of the ice: h = 0.2m and h = 0.5m. It can be immediately noticed that the plate
failure times for these two plates differ quite considerably: t = 0.07 h for the thinner
ice and t = 1.10 h for the thicker ice. The dashed line displays, for h = 0.5m, the
plate deflection in the case of the top surface of the ice having the temperature−4 ◦C
(compared to −2 ◦C for the ice represented by the respective solid line in the figure).
Finally, the dashed-dotted line shows, for h = 0.5m, the plate deflection for the ice
of the viscosities ζ and μ increased by 30%with respect to the reference case plotted
by the solid line; such a difference in viscosities occurs between isotropic ice and
transversely isotropic columnar ice. It is seen that both the temperature and the type
of ice anisotropy have quite a pronounced effect on the strength of ice, significantly
increasing the values of the failure time (by about 30% in the presented example). On
the other hand, the maximum plate deflections do not change much with the change
of temperature and the type of ice.
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Fig. 4.24 Geometry of the
problem and cylindrical
polar coordinates: a plane
view, b ice sheet
cross-section

(a)

(b)

4.2.5 Interaction of Ice with Cylindrical Structures

In the previous Sect. 4.2.4 the plane problem of the interaction of floating ice with a
rectangular in shape structure is discussed. Here a similar problem is considered, in
which creeping ice interacts with a vertically-walled circular cylinder, see Fig. 4.24.
Since the problem involves a single circular structure, cylindrical polar coordinates
r, θ, z (0 ≤ θ < 2π) are adopted, with the vertical z-axis coinciding with the axis of
the rotational symmetry of the cylinder. As before, it is assumed that in the immediate
vicinity of the structure the floating ice cover has a constant thickness, h. The z-axis,
directed downwards, is chosen in such away that z = 0 corresponds to the top surface
of the ice sheet, and z = h to its bottom. A circular cylinder, of radius R0, is treated
as a fixed rigid body that interacts with the ice sheet along its vertical walls at r = R0.
The purpose is to evaluate the values of the horizontal forces which the floating ice
exerts on the structure during an interaction event.

Similar problems, of a circular cylinder interacting with sea ice, were previously
investigated by Wang and Ralston (1983) and Sjölind (1985). In the first of these
papers, the ice was treated as an elastic-plastic material, while in the second a vis-
coelastic rheology was adopted to describe the ice deformation. In this work, the
forces acting on the structure are determined by adopting either the non-linearly
viscous fluid rheology, or the viscous-plastic rheology, both discussed in Sect. 4.2.1.

Governing Equations

The definitions of internal forces acting on an infinitesimal plate element, with their
components expressed in the adopted polar coordinates, are given in Fig. 4.25. Basi-
cally, all the equations describing the equilibrium of forces acting on a plate element
in the horizontal and vertical planes are derived in a way analogous to that presented
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in Sect. 4.1.1. Hence, the balances of the forces acting in the horizontal plane Orθ,
involving the axial forces Nr and Nθ and the shear forces Nrθ = Nθr , are expressed
by

∂(r Nr )

∂r
− Nθ + ∂Nθr

∂θ
+ rqr = 0,

1

r

∂(r2Nrθ)

∂r
+ ∂Nθ

∂θ
+ rqθ = 0,

(4.88)

where qr and qθ denote the components of the external forces acting in the horizontal
direction, which arise due to the wind stress and water current drag.

Along the z-direction, a plate element is subject to the vertical shear forces Qr and
Qθ, and also to the transverse distributed load qz coming from the underlying water.
Since in our problem the in-plane forces Nr , Nθ and Nrθ, all acting in the directions
tangential to the deflection surface w(r, θ), can have magnitudes considerably larger
than those of the vertical shear forces Qr and Qθ, we include the z-components of
the former in the equilibrium balance. Accordingly, the projection of all forces on
the vertical direction, with the own weight of ice neglected, gives

∂(r Qr )

∂r
+ ∂Qθ

∂θ
+ ∂

∂r

(
r Nr

∂w

∂r

)
+ 1

r

∂

∂θ

(
Nθ

∂w

∂θ

)
+

+ ∂

∂r

(
Nrθ

∂w

∂θ

)
+ ∂

∂θ

(
Nθr

∂w

∂r

)
+ rqz = 0.

(4.89)

The above relations, apart from the internal forces, also involve the plate deflection
spatial derivatives. The equilibrium of all moments (see Fig. 4.25b) acting on an

Fig. 4.25 Definitions of
internal forces acting on a
plate element: a axial and
shear forces, b bending and
twisting moments

(a)

(b)
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infinitesimal plate element with respect to the radial (r ) and circumferential (θ)
directions yields the expressions

∂(rMr )

∂r
− ∂Mθr

∂θ
− r Qr = 0,

∂Mθ

∂θ
− ∂(rMrθ)

∂r
− r Qθ = 0,

(4.90)

where Mr and Mθ are the bending moments, and Mrθ = Mθr are the twisting
moments, all per unit width of the plate. Elimination of the shear forces Qr and
Qθ from (4.89) by means of relations (4.90) gives the equilibrium equation
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(4.91)

The transverse distributed load qz , resulting from the response of the underlying
water, is assumed to be proportional to the plate deflection w:

qz = −�wgw. (4.92)

The internal forces in the vertical plate cross-sections are determined in terms of
the axial, σrr and σθθ, and shear, σrθ, stresses by the integrals:

Nr =
h∫

0

σrrdz, Nθ =
h∫

0

σθθdz, Nrθ =
h∫

0

σrθdz, (4.93)

and

Mr =
h∫

0

σrr zdz, Mθ =
h∫

0

σθθzdz, Mrθ = −
h∫

0

σrθzdz. (4.94)

The stresses in (4.93) and (4.94), in the case of creeping behaviour of ice, are
functions of the strain-rates and their invariants, as prescribed by the viscous fluid
and viscous-plastic flow laws, (4.39) and (4.49) respectively. The components of the
strain-rate tensor D due to the motion of ice in the horizontal plane, when expressed
in polar coordinates, are defined by

Drr = ∂vr
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r
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r

)]
, (4.95)
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and their invariants η and γ are given by

η = Drr + Dθθ, γ2 = D2
rθ + 1

4
(Drr − Dθθ)

2 . (4.96)

The strain-rates, developing in ice due to the bending and twisting of the plate, vary
across its depth and are defined in terms of the time rates of the plate curvatures, κr

and κθ, and the twist, κrθ, of the deflection surface w(r, θ). Hence,

Drr = κ̇r (z − z0), Dθθ = κ̇θ (z − z0), Drθ = −κ̇rθ (z − z0), (4.97)

where z0 denotes the position of the neutral plane in the undeformed state. In terms
of the plate deflection function w(r, θ), the curvatures and the twist are given by

κr = −∂2w
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, κθ = −1

r
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− 1

r2
∂2w

∂θ2
, κrθ = ∂
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(
1

r

∂w

∂θ

)
. (4.98)

So far in this chapter, when analysing the creep buckling of ice and the plane ice–
structure interactions, the viscosities μ and ζ were assumed constant in the viscous
fluid flow law (4.39). In the latter law, the Heaviside step function factor H(−η)

appears, the role of which is to ensure that no axial stresses develop in ice dur-
ing its diverging flow (when η < 0), in order to model zero tensile strength of ice.
Such an abrupt cut-off to zero stress during a change from converging to diverg-
ing flow, however, gives rise to instabilities in two-dimensional ice flow numerical
models (Schulkes et al. 1998). For this reason, Morland and Staroszczyk (1998)
proposed a replacement of the abrupt cut-off by a smooth transition to zero stress
over a dilatation-rate range equal to approximately one-tenth to one-hundredth of
the maximum convergence-rate typically appearing in sea ice flow problems, which
significantly improved the stability of numerical algorithms. Hence, a scaling factor
H̄(η) (Staroszczyk 2005) defined by

H̄(η) =
{

1 if η < 0,

exp[−(η/ηc)
2] if η ≥ 0,

(4.99)

is adopted to reduce ice viscosities in a narrow range of divergence-rates, which is
unity at η = 0, tends to zero as η → ∞, and has zero derivatives at η = 0. The free
parameter ηc > 0 is a divergence-rate magnitude around which significant changes
in viscosities occur. Accordingly, with the function H̄ , the flow law (4.39) ismodified
to take, in components, the form

σi j = [
(ζ − μ)Dkkδi j + 2μDi j

]
H̄(η) (i, j, k = 1, 2), (4.100)

with the indices i, j, k denoting either r or θ.
The stress tensor components given by the flow law (4.100), with the strain-

rate tensor components expressed by (4.95), after their insertion into the definitions
(4.93), yield the in-plane axial and shear forces in the forms
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(4.101)

Similarly, the moment definitions (4.94), when combined with the relations (4.100),
(4.97) and (4.98), express the bending and twisting moments as

Mr = −
[
(R1 + R2)

∂2ẇ
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(4.102)

The parameters H1, H2, R1 and R2 in Eq. (4.102) describe the viscous properties of
the ice plate and are defined by relations (4.74) on p. 97, with the bulk and shear
viscosities ζ and μ now replaced by ζ H̄(η) and μH̄(η), accordingly.

Substitution of the moment expressions (4.102) into the equilibrium relation
(4.91), with the distributed load qz given by (4.92), yields the differential equation
for the plate deflection function w in the form
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(4.103)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂θ2
(4.104)

is the Laplace operator expressed in polar coordinates, and R = R1 + R2, as defined
by (4.76).

The above Eq. (4.101) for the in-plane forces, and (4.103) for the plate deflection
evolution, have been derived for the ice creep behaviour described by the viscous fluid
flow law (4.39), in its slightly modified version given by (4.100) with (4.99). When
the viscous-plastic rheological model (4.49) is used instead to describe the creep of
ice, then the ensuing equations are similar, which is due to the formal similarities
between the flow laws (4.39) and (4.49). Both laws include the same two viscosity
parameters, μ and ζ (though their physical meanings are different in the two laws),
and additionally two ice strength parameters P1 and P2 enter the viscous-plastic
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flow relation (4.49). This makes the resulting equations more elaborate compared to
(4.101) and (4.103), but the formal structure of the equations is retained.

Numerical Simulations

The system of two partial differential equations (4.88) with (4.93) for the unknown
ice horizontal velocity components vr and vθ, and Eq. (4.103) for the unknown plate
deflectionw, was solved numerically by applying a finite-difference method in order
to simulate the creep behaviour of a coherent ice cover interacting with a cylindri-
cal structure (Staroszczyk 2005, 2006). The simulations were carried out for two
sea ice rheological models: the non-linearly viscous fluid flow law (4.39) with its
modification given by (4.100), and the viscous-plastic flow law described by (4.49).
Owing to the symmetry of the problem with respect to the wind direction which
was assumed to blow along the coordinate line θ = 0, only the region 0 ≤ θ ≤ π has
been considered in the numerical model. In the radial direction, the ice domain was
assumed to extend from the cylinder wall at r = R0 to the free edge of the ice cover
at r = Rmax . The adopted computational mesh had 300 discrete nodes in the radial
direction and 61 nodes in the circumferential direction, uniformly distributed along
both r and θ ranges, so that there were 18,300 nodes in all, with 54,900 unknown
values of the ice velocities and the plate deflections to be calculated.

At the ice–structure contact surface either no-slip (full bonding) or free-slip bound-
ary conditions were assumed for the ice horizontal deformation, and the simply sup-
ported conditions for the ice plate bending. For a no-slip boundary these conditions
are expressed by

r = R0 : v = 0, w = 0, Mr = 0, (4.105)

and for a free-slip boundary by

r = R0 : v · n = 0, Nrθ = 0, w = 0, Mr = 0, (4.106)

where n denotes the unit vector normal to the cylinder wall. The ice at the outer edge
r = Rmax was assumed to be stress-free, that is,

r = Rmax : Nr = 0, Nrθ = 0. (4.107)

Regarding the initial conditions, it was assumed that at the start of simulations the
floating ice was undeformed and stress-free. The results presented below correspond
to the ice flow stages when the magnitudes of the forces sustained by a structure
attain their maximum values.

The simulations were carried out for a cylinder of the radius R0 = 10m, situated
at the centre of a circular ice field extending to Rmax = 500m, with the thickness
of the ice cover equal to h = 0.2m. The ice was assumed to be driven onto the
structure by a wind of a constant velocity, blowing along the coordinate line θ = 0 in
the negative direction of r . The dimensionless wind and drag coefficients appearing
in (4.77) on p. 98 were adopted of the values Ca = 2 × 10−3 and Cw = 4 × 10−3 ,
and the air and water densities were �a = 1.3 kgm−3 and �w = 1.02 × 103 kgm−3.
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Fig. 4.26 Distribution of the radial forces Nr along the cylinderwall for no-slip boundary conditions
and different magnitudes of the rheological parameter ηc

As first, the results obtained for the ice treated as a viscous fluid are presented.
They have been obtained for the wind velocity ua = 30m s−1 (such a wind generates
a tangential stress τa ≈ 2.3 Pa on the ice surface). The viscous fluid rheologicalmodel
involves threematerial parameters: two viscositiesμ and ζ, and the critical strain-rate
parameter ηc which describes the tensile ice strength reduction rate at the beginning of
diverging flow.The adopted values of the viscositieswereμ = 1.0 × 109 kgm−1 s−1

and ζ = 2.0 × 109 kgm−1 s−1, which can be regarded as typical viscosity magni-
tudes for floating ice. Since the maximum horizontal strain-rates occurring in the
problem considered are of magnitudes equal to about 5 × 10−5 s−1, the parameter
ηc has been adopted from within a range embracing the latter value. Thus, ηc has
been chosen to vary from 5 × 10−6 to 1 × 10−4 s−1 to explore the effect of ηc on
the magnitudes of the total contact forces exerted by ice on the cylinder.

The plots in Figs. 4.26 and 4.27 present the distribution of the forces exerted by
the ice cover on the cylinder wall in the case of no-slip boundary conditions defined
by (4.105). Illustrated is the dependence of the loads on the wall on the magnitude
of the rheological parameter ηc; for comparisons, the contact forces generated in
the case of a linearly viscous response of ice are also plotted. Figure 4.26 shows
the variation of the radial force Nr with the angle θ. It can be noted that the effect
of the ice viscosity reduction in diverging flow occurring at the leeward side of
the cylinder (90◦ < θ ≤ 180◦) is hardly observed on the opposite, windward part
of the wall (0◦ ≤ θ ≤ 90◦), where the forces are practically insensitive to the value
of ηc. In stark contrast, the radial forces on the leeward side decrease dramatically
with decreasing ηc. The results in the plots suggest that for realistic modelling of the
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Fig. 4.27 Distribution of the shear forces Nrθ along the cylinder wall for no-slip boundary condi-
tions and different magnitudes of the rheological parameter ηc

floating ice creep behaviour (small tensile strength of ice compared to its compressive
strength), the magnitudes of the critical dilatation-rate ηc should be chosen of the
order 1 × 10−5 s−1.

A similar pattern is seen in Fig. 4.27, illustrating the variation of the contact shear
forces Nrθ with the angle θ and the value of the rheological parameter ηc. Again,
the tangential forces exerted on the walls on the windward side of the cylinder are
roughly independent of ηc, while those on the leeward side rapidly approach zero
values with ηc approaching the value 1 × 10−5 s−1. Comparing this figure with the
previous one, the change in the loading coming from the ice cover, for small values
of ηc, seems even more dramatic.

Figure 4.28 displays the distribution of the normal forces Nr on the cylinder wall
in the case of free-slip boundary conditions (4.106), when the tangential forces Nrθ

are zero by definition. Due to Nrθ ≡ 0, the whole loading from the ice is passed
on the cylinder walls through the normal contact forces. For this reason, the normal
forces at θ = 0 (the wind direction) are by about 40 per cent larger than those in
the case of no-slip conditions at the interface, see Fig. 4.26. Otherwise, qualitatively
very similar features are observed in the plots for the free-slip and no-slip boundary
conditions at the walls, with practically unchanged contact loading on the windward
side, and a significant reduction of the Nr forces on the leeward side of the cylinder
for the critical dilatation-rates ηc ∼ 1 × 10−5 s−1.

Of a particular interest to civil engineers are the magnitudes of total forces
sustained by a cylindrical structure during its interaction with floating ice. These
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Fig. 4.28 Distribution of the radial forces Nr along the cylinder wall for free-slip boundary con-
ditions and different magnitudes of the rheological parameter ηc

Table 4.2 Values of the total horizontal force F exerted on a cylindrical structure by the sea ice
cover as a function of the rheological parameter ηc, for different cylinder diameters R0 and boundary
conditions on the wall (ηc → +∞ corresponds to the linearly viscous fluid solution). Results for
the wind velocity of 30m s−1

ηc (s−1) F (MN)

R0 = 5m R0 = 10m R0 = 20m

No-slip Free-slip No-slip Free-slip No-slip Free-slip

+∞ 1.142 0.890 1.342 1.138 1.513 1.355

1 × 10−4 1.026 0.859 1.296 1.114 1.497 1.343

5 × 10−5 0.838 0.780 1.183 1.050 1.454 1.309

1 × 10−5 0.669 0.490 0.792 0.615 0.989 0.828

magnitudes, obtained by integrating the radial and shear forces Nr and Nrθ along the
whole perimeter of the cylinder, are listed in Table 4.2. Compared are the results for
different cylinder diameters R0, for different values of the critical dilatation-rate ηc,
and for the two types (no-slip and free-slip) of the boundary conditions.

The viscous-plastic behaviour of sea ice predicted by the constitutive law (4.49)
is determined by the values of the four constitutive parameters: P1, P2, e and �c,
from among which the first and the last, the ice compressive strength P1 and the
critical strain-rate invariant �c, are most important in terms of quantitative results.
Regarding the compressive strength of ice, P1, there is no clarity in the literature as to
its most proper magnitude. In the original formulation of the viscous-plastic model,
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Hibler (1979) used the value 5 × 103 Pa for large-scale Arctic ice simulations, and
the latter value was subsequently used by him and co-authors in a number of papers
(Ip et al. 1991; Hibler and Ip 1995). Flato and Hibler (1992), in turn, applied a larger
value, 2.75 × 104 Pa, also for describing the large-scale behaviour of ice. In our
simulations, a value of P1 = 5 × 104 Pa which is slightly larger than the latter one
was adopted, in belief that the strength of ice increases with decreasing spatial scales
encountered in civil engineering applications, in accordance with the empirical data
discussed in Sect. 3.4. Regarding the magnitude of the critical strain-rate invariant,
a value of �c = 2 × 10−5 s−1 was used in the simulations. The latter value was
adopted on the basis of the results presented above for the viscous fluid rheology,
showing that themost realistic predictionswere obtained for ηc ∼ 1 × 10−5 s−1, and
also assuming that the strain-rate invariants η and γ are of comparable magnitudes
in the relation (4.44) defining �c. The rheological model parameter e, defining the
shape of the yield curve, and hence themagnitude of the shear viscosity relative to the
bulk viscosity, was commonly assumed (Hibler 1979) as 2 (implying μ/ζ = 1/4). In
our simulations the range 1 ≤ e ≤ 3 was explored. Finally, the remaining constitu-
tive model parameter, P2, used in the flow law (4.49) to define the tensile strength of
ice, was adopted as a small fraction of the compressive strength P1. Accordingly, a
value P2 = 1 × 103 Pa, that is, P2 = P1/50 was used in the simulations. Recall that
the small parameter P2 > 0 was introduced in (4.49) to avoid numerical instabili-
ties encountered in earlier viscous-plastic rheological models. Computational tests
showed that this parameter (as long as it is small) has a very limited effect on the
magnitudes of forces sustained by an engineering object, since most of the loading
on structure walls comes from the ice that is under compression on the windward
side of the structure.

The results plotted in Figs. 4.29 and 4.30 illustrate the distributions of the forces
exerted by the ice on the structure walls in the case of no-slip boundary conditions
(4.105). Shown is the dependence of the ice–structure contact forces on the rheolog-
ical parameter e; that is, the effect of the ratio of the shear to bulk viscosities of ice is
presented. The range of e varying from 1 to 3 corresponds to the viscosity ratios μ/ζ
(or μm/ζm) decreasing from 1 (for e = 1) to 1/9 ∼ 0.111 (for e = 3), with the bulk
viscosity ζ held constant for a given value of the strain-rate invariant�, as prescribed
by relations (4.46) on p. 80. Figure 4.29 illustrates the variation of the radial force Nr

with the polar angle θ. One can observe that the effect of the shear viscosity μ on the
magnitude of Nr , for the no-slip boundary, is moderate, especially on the windward
side of the structure. A little surprising is the prediction that most of the cylinder
walls (for the no-slip conditions) is under the action of compressive contact forces.

The distribution of the shear forces Nrθ on the cylinder wall is shown in Fig. 4.30.
It is seen that the shear forces exerted by the floating ice vary smoothly with the
angle θ, with maximum values occurring at the angle θ ∼ 60◦. Thus, the magnitudes
of Nrθ on the windward side of the structure are larger than those on the leeward
side, though the differences are not considerable, especially for smaller values of the
shear viscosity (larger values of the parameter e).

Figure 4.31 illustrates the variation of the normal contact forces Nr with the angle
θ and the rheological parameter e in the case of a free-slip boundary (4.106), when the
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Fig. 4.29 Distribution of the radial forces Nr along the cylinderwall for no-slip boundary conditions
and different values of the rheological parameter e

Fig. 4.30 Distribution of the shear forces Nrθ along the cylinder wall for no-slip boundary condi-
tions and different values of the rheological parameter e

tangential forces Nrθ are identically zero. Comparing this figure with the analogous
plots in Fig. 4.29 for the no-slip boundary conditions, one can note qualitatively
distinct distributions of the radial forces along the cylinder walls. While in the no-
slip case the forces Nr vary in a monotonic manner over the entire range of the
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Fig. 4.31 Distribution of the radial forces Nr along the cylinder wall for free-slip boundary con-
ditions and different values of the rheological parameter e

angles θ, some rapid changes in the magnitudes of Nr are predicted by the viscous-
plastic rheological model in the case of the free-slip boundary. These changes occur
within the range of the angles 60◦ � θ � 90◦, where the normal forces switch from
compressive to tensile ones, with the maximum tensile forces occurring at θ ∼ 90◦.
It turns out that the above dramatic changes in the contact forces within the range
60◦ � θ � 90◦ are associated with the change in the creep behaviour of ice, which
is in viscous flow for the latter range of θ, in contrast to the rest of the wall, where it
is in plastic yield (Staroszczyk 2006). As concerns the case of the no-slip boundary
conditions illustrated in Fig. 4.29, the ice is in plastic flow for all e and θ, except for
the case of e = 1 (the solid line) when, for θ � 30◦, viscous deformation of ice takes
place.

More results, regarding the ice horizontal deformation-rates and transverse plate
deflection variations in time and space in the vicinity of a cylindrical structure inter-
acting with sea ice, can be found in the papers by Staroszczyk (2005, 2006).

4.3 Ice Floe Impact on an Engineering Structure

In the previous part of this section, ice–structure interaction problems are considered
in which, due to the stress, deformation or deformation-rate levels involved, the
behaviour of ice can be sufficiently well approximated by that of a continuous slab
of ice floating on the surface of water. Hence, the ice can be treated as an either elastic
or creeping material which deforms in a continuous (ductile) manner, and it has been



www.manaraa.com

116 4 Sea Ice in Civil Engineering Applications

assumed that the ice remains in perfect contact with an engineering structure walls
throughout an interaction event.

A different situation arises when strains, strain-rates and stresses in ice reach the
magnitudes at which cracks start to develop in the material, giving rise to the brit-
tle fracture of ice. Typically, sea ice undergoes a transition from ductile to brittle
behaviour when stresses exceed the fracture strength of the material (that is, about
5MPa in compression and about 1MPa in tension), or strains exceed the value of
about 0.01, or strain-rates reach the level of about 10−4 to 10−3 s−1 (Hawkes andMel-
lor 1972; Sanderson 1988; Schulson and Duval 2009) . During this creep-to-brittle
transition phase (see Sect. 3.4), the loads exerted by floating ice on a structure attain
their maximum or near-maximum values, and further increase in the ice deformation
and its rate, usually associated with the fast-progressing process of crack formation
and their subsequent growth, does not increase the forces in ice. Typically, the brit-
tle failure of ice takes place, at a given time instant, only at a number of relatively
small regions of the ice–structure interface, therefore the total loads exerted by ice on
the object show a highly irregular variation in time, with characteristic sharp spikes
appearing at irregular time intervals.

In order to investigate the main features of the mechanism of brittle failure of
floating ice during its interaction with an engineering object, a problem is considered
inwhich an ice floe impacts dynamically on a rigid cylindrical structure. It is believed
that, in spite of a number of simplifying assumptions adopted in the course of the
analysis, the results obtained will realistically describe the complex nature of the
dynamic ice–structure interaction phenomenon, and will be in reasonable agreement
with the behaviour of ice observed in Arctic seas (Sanderson 1988; Jordaan 2001).

As already noted in Sect. 3.4, the modelling of the ice fracture mechanism is
difficult, and requires the knowledge of advanced methods of mechanics (Ashby
and Hallam 1986; Sjölind 1987; Nixon 1996; Pralong et al. 2006). The derived
theoretical solutions seem to be by far too complicated to be effectively implemented
into realistic, engineering applications. Therefore, a simple approach (Staroszczyk
2007), extending the method suggested by Sanderson (1988), is applied to construct
a model that enables the estimation of forces exerted by brittle-failing ice on a
vertically-walled rigid structure. In this approach, the mechanism of ice fracture
is described, essentially, by only three physical parameters: (1) axial compressive
fracture stress, (2) an associated axial strain at which the fracture occurs, and (3) ice
clearing axial stress, which is a stress occurring in already fractured blocks of ice.
There is no doubt that many interesting small-scale processes occurring during the
fracture of ice are disregarded in this way. However, such small-scale effects are
deemed unimportant for the purpose of this analysis, the objective of which is to
evaluate total net forces sustained by the structure during its dynamic impact by a
large ice floe.

An ice floe that hits the rigid structure is treated as a compact plate of uniform
thickness. The interaction between the moving floe and the structure vertical wall is
assumed to occur, at any time instant, at a number of small zones, with local frac-
ture events taking place non-simultaneously at different points of the ice-structure
contact interface. The local failure of ice at each small zone is supposed to occur
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independently of the other zones, and all these independent local fracture events are
treated as separate random processes. The total force sustained by the structure is
then determined as a statistical sum of individual loads occurring at all the contact
zones. By simulating numerically a large number of separate floe–structure collision
events, with randomly varied input parameters, the probability distributions of the
total contact force magnitudes during an ice–structure impact phenomenon are cal-
culated. In particular, the probability distributions illustrating the dependence of peak
interaction forces on the floe thickness, its size and its initial velocity are presented.
These distributions can be used by an engineer to perform a risk assessment analysis
for an off-shore structure during the stage of its designing.

4.3.1 Fracture of Ice at a Structure Wall

The problem under consideration is sketched in Fig. 4.32. An ice floe, being initially
at some distance from a rigid structure, is driven by wind and/or water current drag
forces towards the object at a horizontal free-drift velocity V0 . After arriving at the
structure at time t0 and establishing first contact with its walls, the impacting ice floe
starts to break at points at which the magnitudes of local contact stresses exceed the
brittle fracture strength of ice. As the ice undergoes crushing, its chunks pile up or
sink near the structure walls, and the initial kinetic energy of the floe is gradually
dissipated. The floe velocity, v(t), with t measuring the time elapsed from the instant
t0, steadily decreases, until the floating ice slab eventually comes to rest.

In real field conditions, an ice floe leading edge is commonly irregular in shape.
Thus, the contact between the floe and the structure wall is unlikely to take place

(a)

(b)

Fig. 4.32 Definition of the ice floe impact problem: a planar and b cross-sectional views
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(a) (b) (c)

Fig. 4.33 a Imperfect contact between an ice floe and a structure wall, b problem idealization,
c detailed view and definitions

over the entire possible interface between the ice and the object. Instead, as illustrated
in Fig. 4.33a, the ice interacts with the structure walls at a number of locations of
small areas, and these contact locations change all the time as the ice floe advances.
Once the ice–structure interaction has been initiated and the ice starts to fail, broken
blocks of ice of various size and shape are formed in a chaotic manner at each
local interaction zone. These local ice fracture events occur non-simultaneously,
as different ice fragments fail at different times at different places at the interface
surface. At any one small contact zone, the ice fragments are supposed to arrive and
fail one by one: as one fragment fails and the debris is cleared by the process of ice
piling up or sinking, another ice fragment arrives immediately to start its interaction
with the wall and to fail after some time, etc.

In order to model such a complex interaction phenomenon as depicted above, a
method that refines the approach originally proposed by Ashby and Hallam (1986)
and subsequently followed by Sanderson (1988) is applied here. In this method, the
floe is treated as a collection of regular in shape and independent cells, as shown in
Fig. 4.33b, c. Each discrete cell is assumed to have the same size, and to be a square
of dimensions b × b in the horizontal plane. As observed by Sanderson (1988), the
characteristic dimension b of the fractured ice blocks is similar to the ice thickness
h; therefore, it is assumed in this analysis that b ∼ h. As a particular cell starts to
interact with the structure (see Fig. 4.33c), it is supposed that it fails (that is, the axial
stress component normal to the contact surface reaches the fracture strength of ice)
when the whole discrete element is advanced by a distance �; the latter parameter
represents a critical displacement at which the crushing of ice occurs.

The history of loading experienced by a discrete zone (of width b) at the contact
interface, as successive discrete ice blocks arrive and fail there, is idealized in a
manner illustrated in Fig. 4.34, adapted from Sanderson (1988). When a given ice
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Fig. 4.34 Contact stress history for a single discrete zone

block comes to the rigid wall and then moves by a distance �, the contact stress
is assumed to grow linearly from zero to its peak value, equal to the ice fracture
strength, σ f . Next, immediately after the failure of ice, the contact stress falls sharply
to a much lower level, σc, which is a stress in ice caused by forces that are needed to
clear the debris formed during the failure (that is, to move the fractured ice fragments
up or down, since the debris cannot be cleared by pushing it aside, in the direction
lateral to the impact direction). This clearing stress is supposed to remain constant
until the time when the next ice block arrives at the wall and starts to fail, rising
the stress gradually to the σ f level again, etc. The failure and clearing stresses, σ f

and σc, are assumed to have different magnitudes for different ice cells, in order
to reflect both a stochastic character of the fracture mechanism and an associated
statistical scatter in available empirical data. The respective mean values of σ f and
σc are illustrated in the figure by the two horizontal dashed lines. For simplicity, the
variations of σ f and σc about their mean values are supposed to follow the normal
Gauss distribution (though it is possible that the Weibull distribution might be more
appropriate). Moreover, the distance between consecutive failure stress peaks is not
uniform, but also varies in a stochastic manner; in such a way the randomness of an
individual ice block size is accounted for. It is assumed in the model that the average
distance separating two successive failure stress peaks is equal to b—the average
size of a fractured block. Further, it is supposed that there is an equal probability of
a stress peak to lie anywhere within a given stretch of length b (that is, a uniform
probability distribution function is used for this purpose).

The model for the mechanism of the ice–structure brittle interaction developed
on the basis of the above-described ideas involves three main parameters: the stress
magnitudes σ f and σc (their mean values and statistical variation) and the critical
displacement � at which an ice block of length b fails. The latter parameter will
be expressed by means of a critical axial strain, ε f , being the strain at which brittle
fracture occurs.
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Of the above three parameters, the failure stress level σ f , equal to the brittle
fracture strength of ice, is the most significant. As already noted in Sect. 3.4, the
ice fracture mechanism exhibits a pronounced scale-dependence, illustrated by the
pressure–area curve plotted in Fig. 3.11 on p. 44. The weakening of ice strength with
increasing contact area can be roughly approximated by a functional relationship
expressed by

p ∝ A−β, β > 0, (4.108)

where p is the pressure in ice at failure, A denotes the contact area, and the symbol
‘∝’ means ‘proportional to’. There is some discussion in the literature, concerning
the most appropriate value of the parameter β in the above pressure–area relation-
ship. Generally, it is accepted that β takes a value from the range 1/4 to 1/2, with the
lower limit value appropriate for smaller scales (A � 0.1m2), and the upper limit
value relevant for larger scales (A � 103 m2). In the model proposed here, the value
β = 1/4 is adopted, which has been derived theoretically by Palmer and Sanderson
(1991) and Xu et al. (2004) on the basis of a fractal analysis of the size distribu-
tion of fragmented sea ice. Hence, the ice size effect on the failure pressure, or the
compressive fracture strength σ f , is expressed in the following, normalized, form as

σ f = σ∗
f

(
A

A0

)−1/4

, (4.109)

where A0 is a reference contact area, assumed here to be equal to 1m2, and σ∗
f is a

normalized ice failure strength (that is, that corresponding to A0). Xu et al. (2004)
recommend a value of σ∗

f = 1.66MPa, as the one providing the best fit to empirical
data. The latter value is particularly suitable for the case of contact areas of the order
of 1m2; that is, those occurring in typical engineering problems.

The ice failure strength defined by Eq. (4.109) represents its mean value. The
experimental data for sea ice, however, show a significant statistical scatter.
Sanderson (1988) carried out some detailed statistical calculations for the Arctic
sea ice and found that the variation coefficient (the ratio of the standard deviation to
the mean value) of the data for first-year ice is as high as about 45%, and for multi-
year ice it is about 65%.As in our ice–structure interaction problemwe are concerned
mostly with first-year ice, the variation coefficient equal to 50% has been chosen to
describe the scatter in possible values of σ∗

f . Moreover, on the basis of statistical
analysis, Sanderson (1988) observed that the probability distribution of experimen-
tal data for σ∗

f is approximately normal, and, therefore, such a type of distribution
will be used in the numerical simulations presented further in this section.

While the failure strength of ice, σ f , can be relatively easily determined by small-
scale indentation tests or large-scale observations, the magnitude of the ice clearing
stress, σc, the second free parameter in the proposed model, is more difficult to iden-
tify, since, to the author’s knowledge, no in situ measurements of this quantity have
been conducted yet during real ice floe impact events. For this reason, several authors
have made attempts to estimate the ice clearing stress levels indirectly, by theoretical
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arguments. For instance, Sanderson (1988) analysed the work done against gravity
which is required to rise or sink ice fragments after their failure, and compared it to
the work done by the forces acting in impacting ice. On this basis it has been inferred
that the typical clearing stress is appreciably smaller than the failure stress, and the
value of σc = 0.05MPa has been proposed for multi-year ice. It seems, however,
that for thinner, first-year ice considered here the clearing stresses are even smaller.
Therefore, the value of 0.02MPa has been adopted as a mean magnitude of σc,
together with a 50% variation coefficient accounting for its possible scatter, which
is the same value of the variation coefficient as that assumed for the failure stress
scatter.

Finally, the third free parameter in the proposed ice floe impactmodel is the critical
strain ε f , developing during the process of brittle crushing of ice, and determining the
critical axial displacement� (see Fig. 4.34) through the relation� = ε f b. There are
some experimental data regarding the strain magnitudes at which ice fractures, but
these are limited to small-scale laboratory tests on fresh-water ice samples (Schulson
and Gratz 1999; Iliescu and Schulson 2002), and thus have little relevance to large-
scale field conditions. Therefore, as in the above case of σc, the value of the critical
strain ε f has been inferred by theoretical considerations (Sanderson 1988), and the
values ranging from ε f = 0.02 to ε f = 0.05 have been obtained for multi-year ice.
In the present analysis the lower value is adopted, that is ε f = 0.02, in belief that
pre-failure strains that develop in young ice are smaller than those occurring in thick,
multi-year ice.

4.3.2 Numerical Method

The ice floe impact model, based on the assumptions and simplifications discussed
above, has been applied to simulate dynamic ice–structure interaction events. In
these simulations, the direction of the floe movement is defined by an axis x , with
the origin x = 0 on the structure wall and its increasing coordinate measuring the
ice penetration distance, shown in Fig. 4.34 (see also Fig. 4.35 on p. 123). Further,
it is assumed that the first contact between the floe and the structure takes place at
time t = 0 and the floe velocity is then v = V0.

The computations proceed in the following steps (Staroszczyk 2007):

1. Given the initial geometry of an ice floe, its in-plane dimensions and a mean
thickness h, the ice sheet is discretized in the way shown in Fig. 4.33, by choosing
the ice cell size b of a magnitude close to h. Also the floe mass, m, and its initial
kinetic energy are evaluated.

2. For each discrete contact zone at the ice–structure interface, a separate stochastic
realization of loading, as illustrated in Fig. 4.34, is prescribed, with the values
of the failure and clearing stress as well as the distance between consecutive
failure stress peaks randomized about theirmeanvalues. For this purpose, standard
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random number generators for the uniform and normal probability distributions
are used.

3. At each calculation step, for t > 0, the floe is advanced by a small increment δx ,
chosen to be a fraction of the critical displacement� = ε f b. For the current value
of x , a local contact stress, determined from the respective realization of loading,
is calculated for each discrete zone, and all these local stresses, multiplied by the
respective local contact areas, are summed up to yield a total impact force, F , at
current x and t .

4. Assuming that during a given displacement step k (k = 1, 2, 3, . . .) the interaction
force, Fk , is constant, the total work done by this force over the distance δx is
determined as Fkδx . Equating that work with the amount of the total kinetic
energy of the floe lost due to the decrease in its velocity from the value of vk−1

to vk , the current velocity vk can be evaluated from the relation

v2
k = v2

k−1 − 2Fk

m
δx, k = 1, 2, 3, . . . , v0 = v(t = 0) = V0. (4.110)

5. Assuming a linear variation of the floe velocity at each step, the time that elapsed
during the advance of the floe at the k-th step, denoted by (δt)k , is calculated from
the formula

(δt)k = 2 δx

vk−1 + vk
. (4.111)

All the time increments, added up over all preceding displacement steps, deter-
mine the current value of time t elapsed since the beginning of the interaction
event.

The procedure outlined above yields time histories of the total interaction force
F , the floe velocity v, and the penetration distance x for one particular stochastic
realization of an impact event. For each such a realization, a magnitude of the max-
imum force F occurring during an entire interaction event is found, and then, by
simulating a large number of random realizations, probability distributions for the
peak ice impact loads F are calculated.

4.3.3 Simulations of Forces Exerted on a Structure

The proposed model has been used to simulate a series of dynamic impact events
of the geometries shown in Fig. 4.35. The basic configuration investigated in the
simulations is that depicted in Fig. 4.35a, showing a circular cylindrical structure of
radius r0 interacting with a circular ice floe of radius R0 and an average thickness h.
In order to examine the effect of the shape of the impacting floe edge on the forces
sustained by the structure, also the configuration presented in Fig. 4.35b has been
considered, in which the projection of the leading edge on the horizontal plane is a
straight line normal to the direction of the floe movement.
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(a) (b)

Fig. 4.35 Cylindrical structure of radius r0 in contact a with a floe of radius R0, b with a straight-
edged floe. The hatched areas show the regions of ice penetrated by the structure

The numerical computations have been carried out for a vertically-walled circular
cylinder of radius r0 = 10m. As discussed earlier in Sect. 4.3.1, the three basic
parameters of the model have the values: σ∗

f = 1.66MPa, σc = 0.02MPa and ε f =
0.02. The ice density (needed to determine the total mass of the floe) was taken
as 900 kgm−3. All probability distributions presented below have been obtained by
running the model repeatedly for 10,000 times.

Typical time histories of (a) the total force, Fx (t), acting on the structure in the
direction of the floe advance, (b) the floe velocity, v(t), and (c) the ice penetration
distance, x(t), are shown in Fig. 4.36. These results have been obtained for a floe
of radius 100m and thickness 0.5m, moving towards the structure at the velocity of
0.5m s−1. It can be seen that, for the particular realization illustrated, the impact event
lasts nearly 25s, the ice floe moves a distance of about 6.8m before it comes to rest,
and the peak forces exerted on the structure have magnitudes close to 1.6MN. As
anticipated, the time-variation of the impact forces is very irregular. On the contrary,
the floe velocity v and its position x vary in a relatively smooth way. A characteristic
feature is a gradual increase of peak forces as the collision progresses—this is because
the total ice–cylinder contact area increases with the interaction time, so that the
number of local zones at which ice fails increases.

The results plotted in Fig. 4.36 illustrate a single impact event, which due to
the intrinsic randomness of the process may not be representative for the dynamic
phenomenon under consideration. More general information can be obtained by a
statistical analysis of a series (in our case 10,000) of randomized runs. It turns outs
that, for the same input data as above, the mean values of the peak load x- and y-
components (see Fig. 4.35) are F̄x = 1.58MN and F̄y = 0.59MN, with respective
standard deviations 0.18 and 0.08MN. Similar ratios of the Fy to Fx components
have been obtained for other combinations of the floe parameters (Staroszczyk 2007).
This means that the average lateral peak force equals nearly 2/5 of the average
longitudinal component, indicating thus that the ice–structure interaction loads are
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(a)

(b)

(c)

Fig. 4.36 a Typical history of the total force Fx , b the floe velocity and c the ice penetration
distance during an impact event, for the floe radius R0 = 100m and thickness h = 0.5m, and its
initial velocity V0 = 0.5m s−1

far from symmetric with respect to the x-axis direction (the direction of the floe
advancement).

The following three diagrams show density probability distributions of the peak
ice–structure interaction forces. These figures illustrate the influence of the floe
velocity and its thickness and planar size on the magnitude of the total longitudinal
contact force Fx and the statistics of its occurrence. In the plots, for each value of
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Fig. 4.37 Exceedance probability distributions of peak impact loads exerted on a structure for
different floe thicknesses h (R0 = 100m, V0 = 0.5m s−1). Compared are the results for circular
(lines) and straight-edged (symbols) floes

the load Fx obtained from the simulations, the probability that this particular value
will be exceeded is shown. Fig. 4.37 demonstrates the effect of the floe thickness
h on the exceedance probabilities of the total impact loads, for the floe of radius
R0 = 100m and its initial velocity V0 = 0.5m s−1. It is seen that the influence of
the floe edge geometry on the load probability distributions is negligibly small—the
maximum relative discrepancies are of order 1%. On the other hand, the influence of
the ice thickness on the impact load magnitudes is, obviously, significant. However,
the total loads sustained by the cylinder are not roughly proportional to the ice floe
thickness, as could be expected at first sight, which is due to the scale-effects (the
thinner ice has larger fracture strength σ∗

f than the thicker one).
The plots in Fig. 4.38 display the exceedance probability curves for the peak loads

Fx as a function of the initial velocity of ice, V0, with the ice floe thickness and radius
kept constant. Hence, the probability distributions for Fx are plotted for the values of
V0 ranging from 0.2 to 0.5m s−1. It can be noted that, despite an increase in the floe
kinetic energy by a factor of 6.25 when the velocity changes from 0.2 to 0.5m s−1,
the magnitudes of the impact forces, at the same exceedance probability, increase
only by a factor of about 1.25 to 1.4.

In Fig. 4.39 the floe size effect on the exceedance probabilities of the peak impact
forces is illustrated, by presenting the results of simulations carried out for circu-
lar floes of radii R0 varying between 50 and 200m. In a way, the character of the
exceedance curves resembles that in the previous diagram. Although the total kinetic
energy of the moving floe increases significantly with increasing floe radius (by a
factor of 16 between the smallest and the largest floes considered), the corresponding
peak load magnitudes vary merely by a factor of about 1.5 at the same exceedance
probability. This demonstrates once again the complexity of the interaction mecha-
nism in which extensive brittle fracture of ice takes place.
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Fig. 4.38 Exceedance probability distributions of peak impact loads exerted on a structure for
different initial floe velocities V0 (h = 0.5m, R0 = 100m)

Fig. 4.39 Exceedance probability distributions of peak impact loads exerted on a structure for
different floe radii R0 (h = 0.5m, V0 = 0.5m s−1)

There is no doubt that the above-presented model considerably simplifies the real
phenomenon of the ice floe impact on an engineering structure. However, its main
purpose has been to provide an engineer with the estimations of the magnitudes of
the total forces exerted by ice on a structure in order to carry out a risk assessment
analysis, without a detailed consideration of the local mechanisms occurring in the
immediate vicinity of the structure walls and the processes taking place in the ice
itself. Such a more insightful analysis of the brittle behaviour of ice impacting a
structure has become possible in the past decade with the fast development of the
discrete-element method (DEM) and its application to sea ice problems. Some exam-
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ples of the application of this still relatively new discrete method to the ice–structure
interaction problems can be found in the papers by Polojärvi and Tuhkuri (2009)
and Polojärvi et al. (2015). In recent papers by Herman (2016, 2017), the DEM has
been employed for the numerical analysis of the problem of surface wave-induced
breaking of floating ice. It seems that an extension of the latter model by account-
ing for the ice–structure and wave–structure interaction mechanisms would make
possible a very realistic dynamic analysis of the coupled wave–ice–structure system
(though, certainly, such an analysis would involve high computational costs typical
of the discrete-element method applications).
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Chapter 5
Sea Ice in Geophysical Applications

In Chap. 4, a number of problems in which an interaction of sea ice with an engi-
neering structure occurs is considered. In these problems the ice can be treated as
a coherent sheet floating on the free surface of water, and the characteristic lengths
involved in this kind of ice–structure interaction phenomena are measured in tens to
hundreds of metres (at most to a few kilometres in the case of undisturbed land-fast
ice, but such conditions are very rare).

This chapter is devoted to the description of the sea ice behaviour on geophysical
length scales; that is, the scales ranging from at least tens of kilometres up to the
scales of thousands of kilometres. These are the scales which are of interest to those
dealing with the weather forecasting, or those involved in the climate modelling.
On such length scales, the sea ice cover cannot be regarded as a continuous layer
covering the surface of ocean water. Instead, it must be treated as a collection of a
large number of ice floes of vastly differing sizes (varying frommetres to kilometres),
with ocean water interspersed between the floes. Depending on the wind and water
current conditions, and the thermal interaction of ice with other components of the
climatic system, the large-scale behaviour of ice can be very complex and difficult to
predict. Also, in contrast to typical civil engineering problems analysed in Chap. 4,
the time scales encountered in the problems considered in this section are much
longer, since they can range from weeks up to several years.

In the first section of this chapter key mechanisms occurring in sea ice are briefly
described. Next a system of equations governing the large-scale dynamic behaviour
of a sea-ice pack is formulated, first in the spatial, and then in thematerial coordinates.
Based on these equations, two discrete models for sea ice dynamics are developed.
The first one is constructed by following the classical finite-element method, while
the second model is based on a newer, mesh-free approach, using the method of
smoothed particle hydrodynamics (SPH). Both numerical models have been used to
simulate the evolution of a large ice pack under the action of wind, and the results
of calculations illustrating the behaviour of sea ice are presented.
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5.1 Important Physical Mechanisms in Sea Ice

The process of formation of sea ice is described in detail in Sect. 2.1. Apart from
thermodynamic phenomena which dominate the formation process during its early
stages, the dynamics of a fully developed ice pack is primarily driven by the action of
wind and water currents, which make the ice move relative to the sea, with a typical
velocitymagnitude of about 10cms−1 (8.64kmper day).On large geophysical scales,
also the Coriolis effects play a role, and therefore they must be accounted for in
analytical descriptions of the sea-ice dynamics.

As a multi-floe ice pack drifts as a whole, the pattern of individual floes (their
mutual layout) continuously change in time due to non-uniform wind and water drag
stresses acting on each floe because of their different shapes and sizes, and also
because of the collisions of adjacent floes. As already emphasized in Chap. 4, a very
important feature is that regions of either diverging or converging flow develop in an
ice pack,with very distinctmechanical behaviour of ice in these regions.When the ice
is in diverging flow, then there is practically no dynamic interactions between floes,
since collisions between individual floes are rare and, therefore, they mostly move
away from each other in a free drift controlled by the wind and water current drag
forces. On the contrary, when the ice is in converging flow, then frequent collisions
of adjacent floes take place and the ‘macroscopic’ behaviour of the ice cover is very
complex. As a result of dynamic contact forces that arise between colliding floes,
the latter first start to crush along their edges, then they bend and fracture, and due
to the wind and water wave action they subsequently over- or under-ride each other,
or raft on each other. In the outcome of this series of events, ice ridges form in the
pack. This important mechanism is illustrated in Fig. 5.1.

The ridges include compression ridges forming as ice floes are driven towards each
other, or shear ridges, formed by lateralmovements of interacting floes. Compression
ridges are usually very irregular in shape and height, with their surface sails reaching
4m and underwater keels up to 10m below sea level (Sanderson 1988). Shear ridges,
which develop much rarer than compression ridges, are generally very regular in
shape and height, and can have a length of a few kilometres. Essentially, the ice
ridging process can be regarded as irreversible. Once an ice floe has increased its
thickness as a result of ridging, then this thickness either remains constant, or can
increase again, as a result of another series of inter-floe collision events, provided
that converging flow is maintained and, of course, no ice melting is involved. When,
subsequently, ice flow becomes diverging, then the floes with ridges move away from
each other, with their mean thicknesses remaining unchanged.

The above-said concerns the first-year ice before its first summer season. As sum-
mer temperatures increase, the process of ice deterioration begins due to its melting.
The thickness of ice decreases, its surface becomes smoother, and the initially coher-
ent winter ice cover gradually disintegrates into a system of smaller floes, before the
nextwinter season starts.As the cycles ofwinter ice formation and its summerdeterio-
ration repeat over several years, themulti-year ice in theArcticwaters graduallygrows
thicker, with the mean thickness of about 2–6m for the ice which is 5–10 years old.
Ridges on suchmulti-year floes can have sails 5m high, and keels up to 20m deep.
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Fig. 5.1 Idealization of ice
ridging mechanism

5.2 Sea-Ice Dynamics Equations

The first attempts to describe analytically the mechanics of sea ice were undertaken
at the beginning of the 1900s, when a number of scientific expeditions to the Arctic
Basin and Antarctica were carried out. In these early descriptions, sea ice was treated
as a collection of rigid floating bodies representing ice floes, which are driven by
wind and ocean current drag forces, but no interactions between these bodies were
considered. Only around the 1930s, first theoretical models appeared, in which the
interaction between adjacent floes was described in a simplified way by introducing
friction forces acting along floe boundaries. A more rigourous research, by the mod-
ern standards, was initiated only in the middle of the previous century, when first
theories were formulated in which large-scale behaviour of sea ice was described
by the methods of continuum mechanics. This research was intensified in the 1970s,
especiallywhen theAIDJEX (Arctic IceDynamics Joint Experiment) project was run
in the United States between 1970 and 1978. This was a very substantial undertak-
ing, which combined empirical observations, theoretical investigations and numeri-
cal modelling within the framework of one research programme. The interest in the
project’s results was additionally increased by the outbreak of the world oil crisis in
the mid 1970s, in response to which the exploration of the Arctic off-shore waters
for oil resources was started.

When viewed on the horizontal plane, see Fig. 5.2, a sea-ice pack visually resem-
bles a cross-section through a granular material, like a soil. This observation is the
explanation why the first theories describing the large-scale behaviour of sea ice,
and first of all its rheology, were the adaptations of models that had been already
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Fig. 5.2 Horizontal plane
view of an ice pack

well established in soil mechanics, such as elastic-plastic (Pritchard 1975) or plastic
(Hibler 1977, 1979) models used for cohesionless soils, with an idea to capture in
this way irreversible processes occurring in ice. However, inclusion of the ice ridging
process into the models made them more complex than the corresponding models
in soil mechanics, since individual floes can change significantly their planar size
during the deformation of an ice pack, whereas in soil mechanics it is commonly
assumed that single grains (counterparts of ice floes) do not deform (deforms only
the soil skeleton treated as a whole).

Another approach to sea ice modelling, prompted by satellite observations of
sea ice fields in which large-scale deformations resemble the behaviour of two-
constituent mixtures, is based on the application of a continuum mixture theory. In
this way, all the equations governing the two-dimensional flow of sea ice can be
derived in a consistent manner from the fundamental three-dimensional equations
expressing the conservation laws of thermodynamics. Such a rigorously derived
theoretical model was formulated by Gray and Morland (1994), in which the two-
dimensional flow equations are obtained by integrating full three-dimensional mass
and momentum balances through the ice thickness. By following this method, the
introduction of some non-physical terms, adopted in an ad hoc manner in the equa-
tions appearing in the Hibler (1979) approach, is avoided. Also, a new non-linearly
viscous fluid constitutive model with a stress bounding envelope was proposed by
Gray and Morland (1994), in an attempt to circumvent numerical difficulties associ-
ated with the application of a viscous-plastic rheological model with a yield surface.

In this section, the equations that describe the large-scale dynamics of sea ice are
presented. Hence, mass conservation and linear momentum equations are formulated
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for the two-dimensional space, supplemented by thermal balance equations describ-
ing the phase changes (freezing and melting) in ice and heat fluxes between the ice
and the air and ocean water. Finally, constitutive models which are applicable to the
large-scale sea ice deformations are discussed; these models essentially extend those
already formulated in Chap. 4 for the description of the behaviour of sea ice on civil
engineering scales.

5.2.1 Mass Conservation Equations

Sea-ice pack behaviour is analysed in a rectangular Cartesian coordinate system,
with origin O and the two coordinate axes, x1 and x2, placed on the horizontal plane
defined by themean sea level; thus, for simplicity, Earth’s surface curvature is ignored
in the analysis. Let the current position of an ice particle on the horizontal plane be
defined by the position vector x(t), with components xi (t) , i = 1, 2. The motion
of the ice pack in the plane Ox1x2 is described by the horizontal velocity vector
v(t), with components v1 and v2. It is assumed that the lead water (the water in open
spaces between ice floes) moves horizontally with the velocity of the local ice field.
The pack layer has a variable thickness, defined by the function h(x, t). The latter is
supposed to be a smooth function of x, which is achieved by continuous extension
of the surfaces of adjacent ice floes in places where there is lead water, as shown
in Fig. 5.3. On the horizontal plane Ox1x2, ice floes occupy, in general, only some
fraction A(x, t) of the total surface of the ice–water system. This area fraction of
ice, also referred to as the ice concentration, is defined as the area of the sea surface
covered by the floating ice per the unit area of the sea; hence, it has the property
0 ≤ A ≤ 1.

In order to formulate the equations describing the principle of mass conservation
of ice let us neglect, at this point, all thermodynamic effects taking place in the
ice–water–atmosphere system, such as phase changes (melting and freezing) that
can change the mass of ice. Further, also suppose that there is no ice accumulation
(due to the atmospheric precipitation) on the top surface of ice, so that the total mass
of ice in the system considered remains constant. Under such simplifications, the
mass conservation balance for the ice pack is expressed in terms of two equations,
describing the evolution of the local ice concentration A and the local ice thickness

Fig. 5.3 Vertical cross-section through an ice pack layer
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h. These two equations are adopted in the following forms (Gray and Morland 1994;
Morland and Staroszczyk 1998):

DA

D t
+ Aη [1 − α(A)H(−η)] = 0, (5.1)

Dh

D t
+ hηα(A)H(−η) = 0. (5.2)

In the above equations,D/Dt denotes thematerial (convectedwith the velocity field v)
time derivative, and H(−η) is the Heaviside step function defined by relations (4.35)
on p. 76. Recall that η(x, t) = div v is the horizontal dilatation-rate which is positive
in diverging flow and negative in converging flow. The function α(A)will be defined
shortly.

The Heaviside function is used to describe the distinct ice pack behaviour in
diverging and converging flows. In the case of diverging flow (η > 0), on account of
the definitions (4.35), the mass balance equations (5.1) and (5.2) reduce to the forms:

DA

D t
= −Aη < 0,

Dh

D t
= 0. (5.3)

These relations imply that in diverging flow the ice concentration A decreases
with time, whereas the ice thickness h (understood as shown in Fig. 5.3) remains
unchanged. This is in contrast to the case of converging flow (η < 0), for which the
full forms of equations (5.1) and (5.2) apply, leading to the expressions

DA

D t
= −Aη [1 − α(A)] ≥ 0,

Dh

D t
= −hηα(A) ≥ 0, (5.4)

provided that the condition 0 ≤ α(A) ≤ 1 holds. It will be seen that, by construction
of the function α(A), this condition is satisfied indeed. Relations (5.4) show that in
converging flow both the ice concentration and ice thickness increase in time.

It is seen from (5.3) and (5.4) that the ice thickness h can only either grow or
remain unchanged in time, depending on the sign of η, reflecting thus the irreversible
character of the ice ridging mechanism. In order to incorporate this mechanism
into the theoretical description of the ice-pack dynamics, a so-called ice ridging
function, denoted here by α(A), is introduced. In the first sea-ice dynamics model,
formulated by Hibler (1979), this function was proposed in a form resulting in the
ice concentrations A exceeding unity during sustained converging flows. To avoid
this non-physical ice pack behaviour, Gray and Morland (1994) postulated that the
properly constructed ridging function should satisfy the set of conditions

η ≥ 0 : α = 0; η < 0 : 0 ≤ α ≤ 1; α → 1 as A → 1. (5.5)
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Accordingly, the following form of the ridging function α(A) is adopted

α(A) =
{

A−A f

1−A f
, for 0 < A f < A ≤ 1,

0, for 0 ≤ A ≤ A f .
(5.6)

In (5.6), A f is a critical ice concentration level, belowwhich no ice ridging occurs (in
spite of the converging flow regime), and above which α(A) increases continuously
to approach the unit limit as A approaches unity. Two particular values of A f = 0.5
and A f = 0.75 were used in numerical simulations carried out by Gray andMorland
(1994).

5.2.2 Linear Momentum Equation

As stated earlier, the deformation of the sea-ice pack is assumed to be two-
dimensional, restricted to the horizontal plane Ox1x2; that is, the possible motion of
ice in the vertical x3-direction is neglected. The horizontal linearmomentumequation
governing the motion of ice can be derived (Gray and Morland 1994) by integrating
the full three-dimensional balances through the ice thickness, to yield the expression:

�h
Dv

D t
= div N + f a + f w + f c . (5.7)

In (5.7), � is the (constant) intrinsic density of ice, with the value of � = 917 kg m−3,
N , with components N11, N12 and N22, is the depth-integrated horizontal stress tensor
(with physical dimension Pa m), f a and f w denote external tractions exerted on
the top and the bottom surfaces of the ice cover by wind stress and water drag,
respectively, and the term f c represents the Coriolis force effect.

The stress N is a mean stress acting on a unit area of the aggregate consisting
of ice floes and lead water. Hence, by analogy to the theory of two-phase media,
it can be interpreted as so-called partial stress, which is the product of the intrinsic
stress times the ice area fraction A. Hence, it can be related to the actual stress in ice,
denoted by σ, by the formula

N = Ar(h) f (A)σ. (5.8)

The stress σ describes a mean value of stress per unit thickness of ice, and it acts
when there is full contact between adjacent floes along their edges, corresponding to
unit ice concentration A. This stress is prescribed by constitutive relations in terms
of the horizontal deformation-rates of the ice pack, see Sect. 5.2.4.

The proportionality factors r(h) and f (A) in (5.8) measure the effects of increas-
ing ice thickness h, and of increasing contact length along floe boundaries with
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increasing ice concentration A, on the depth-integrated stress. Two simple forms of
the factor r(h) are

r(h) = h, or r(h) = h2

h∗ . (5.9)

The first, linear, dependence on h supposes a uniform contact stress variation across
the ice thickness,whereas the second, quadratic form, supposes a linear variationwith
depth, with h∗ denoting a typical ice thickness magnitude. In this work only the first,
linear form r(h) = h, will be adopted for computations. The dimensionless contact
length function f (A), necessarily with the properties f (0) = 0 and f (1) = 1, has
been adopted in the form proposed by Gray and Morland (1994):

f (A) = exp[−K (1 − A)] − exp(−K )

1 − exp(−K )
, K � 1, (5.10)

which is amodification of an earlier (improper) formula byHibler (1979), introduced
here to ensure the condition f (0) = 0. According to Hibler, the empirical parameter
K should have a value of about 20.

The terms f a and f w entering the motion equation (5.7) represent the tangential
tractions acting at the top surface and the base of the ice cover. Like the stress N, f a
and fw have also the meaning of partial quantities. Accordingly, they are expressed
in terms of the intrinsic tractions τ a and τ b exerted by wind and water currents,
respectively, as follows

f a = Aτ a , f w = Aτw . (5.11)

The intrinsic surface tractions τ a and τ b are adopted in the forms given by the
quadratic relations (4.77) on p. 98, which define the tractions in terms of dimension-
less wind stress and water drag coefficients Ca and Cw. A detailed discussion on the
magnitudes of these coefficients can be found in the papers by Kara et al. (2007)
and Lu et al. (2011). In the first paper, devoted to the wind stress drag analysis,
detailed maps of the global ocean are presented, showing typical monthly-averaged
magnitudes of Ca during the 7-year-long period 1998–2004. In their conclusion, the
authors suggest an annual mean value of Ca ≈ 1.5 × 10−3 for high-latitude regions
of both hemispheres. In the second paper, investigating the ice–ocean drag coefficient
magnitude, specific values for Cw are compiled (in Table 1 of that paper) for various
sites (seas and gulfs) in polar regions. It turns out that these values differ significantly,
depending on a particular site, type of ice (smooth or rough), typical floe size, etc.
For instance, Cw = 5.3 × 10−3 to 7.8 × 10−3 for smooth ice in the Bering Sea,
Cw = 7.1 × 10−3 to 8.3 × 10−3 in the Greenland Sea, and Cw = 1.3 × 10−3 to
1.6 × 10−3 in the Weddell Sea. For moderately-ridged ice in the Baltic Sea, a value
of Cw = 3.5 × 10−3 is given. In the present work, the values Ca = 2 × 10−3 and
Cw = 4 × 10−3 will be applied in numerical simulations, which are the same values
as those used in Chap. 4 in the analysis of civil engineering problems.

The term fc describing the Coriolis force effect in the momentum equation (5.7)
is given by
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f c = �hac , (5.12)

where ac is the Coriolis acceleration vector defined by

ac = 2v × Ω. (5.13)

In this formula, Ω is the vector of the angular velocity of Earth in its rotation about
the north–south axis, with Earth’s rotation-rate equal toΩ = 7.292 × 10−5 rad s−1.

On account of the definitions (5.8), (5.9)1, (5.11), (5.12) and (5.13), the linear
momentum equation (5.7) becomes

�h
Dv

D t
= Ah f (A)divσ + A (τ a + τw) + 2�hv × Ω, (5.14)

which in components is expressed as

�h
Dvi

D t
= Ah f (A)

∂σi j

∂x j
+ A (τai + τwi ) + �h fc εi j3 v j (i, j = 1, 2). (5.15)

In the latter equation, εi j3 is the permutation symbol, with the values ε123 = +1,
ε213 = −1 and zero otherwise, and the parameter fc is the Coriolis coefficient (or
the Coriolis frequency) defined by

fc = 2Ω sin φ, (5.16)

where φ is the geographic latitude angle. The typical values for fc are about
10−4 rad s−1.

5.2.3 Thermal Balance Equation

Assume that the temperature field in an ice pack is described by a function
T (x1, x2, x3, t). Note that, contrary to the preceding analysis, in which all fields
were treated as two-dimensional, the temperature is a three-dimensional field, with
the vertical variation of T across the ice pack depth. This is done to account for the
fact that the vertical gradient of temperature in ice can be significant, and is much
larger than the respective gradients in the horizontal plane. The heat conduction
through the medium is assumed to obey the standard Fourier law, with constant ther-
mal conductivity κ (equal to 2.22Wm−1 K−1 at T = 272 K). Further, it is assumed
that heat production due to mechanical working can be neglected due to the low
shear stress and strain-rate levels occurring in ice. Under these simplifications, the
equation of energy conservation is given by the thermal balance (Gray and Morland
1994) expressed in the form



www.manaraa.com

140 5 Sea Ice in Geophysical Applications

�AC
DT

D t
= κdiv (Agrad T ) + Ar + 1

2
kL . (5.17)

In the above equation, C denotes the specific heat capacity of ice (which at the
melting point equals 2.04 × 103 J kg−1 K−1), r is the energy deposit per unit
volume per unit time, k is the mass transfer per unit pack volume per unit time, and
L = 3.34 × 105 J kg−1 is the specific latent heat of ice melting.

By taking into account that the temperature gradient components in the x1 and x2
directions are by several orders of magnitude smaller than those in the vertical x3
direction, hence the former can be ignored in the energy equation (5.17), the thermal
balance can be expressed in the following reduced form

DT

D t
= κ

�C

∂2T

∂x23
+ kL

2�AC
+ r

�C
, (5.18)

The latter equation is subject to the conditions T = Tm at the ice base and T = Ts at
the ice top surface, where Tm denotes the ice melting point and Ts is the prescribed
temperature at the ice surface. In polar regions, the difference between the ice pack
basal and top surface temperatures can be as high as 20–30 K.

It should be noted in passing that when the thermal balance equation (5.18) is
solved to incorporate thermodynamic effects in a sea-ice pack model, then the mass
conservation equations (5.1) and (5.2) for the ice concentration A and thickness h
should be supplemented with additional terms describing the mass fluxes into the
system due to phase changes taking place in ice.

5.2.4 Constitutive Models

It is a general belief that the large-scale behaviour of a sea-ice pack, a complex system
of ice floes of widely differing sizes, either interacting with each other or separated
by lead water, resembles the behaviour of a viscous-plastic material. Therefore, the
viscous-plastic rheological models are in common use to describe and numerically
model this type of the material behaviour. Most of the large-scale viscous-plastic
models stem from the formulation originated by Hibler (1979) and subsequently
modified and extended by him and his co-workers and followers (Leppäranta and
Hibler 1985; Ip et al. 1991; Hibler and Ip 1995; Hunke and Dukowicz 1997). Hence,
the rheology of sea ice is described by the viscous-plastic flow law given byEq. (4.49)
on p. 81, but without the term P2 defining the tensile strength of ice (or in other words,
with P2 = 0). A simpler variant of this rheological model, known as the cavitating
fluid rheology, in which shear stress in ice is zero, was also tried (Parkinson and
Washington 1979; Flato and Hibler 1992), but without much success.

The viscous-plastic model with the elliptic yield curve in principal stress axes
(Hibler 1979) requires distinct responses during yield (plastic flow) and during the
flow when the yield condition is not applying (viscous flow), which adds numerical
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Fig. 5.4 Different bounding
envelopes: elliptic yield
curve for e = 2 (Hibler
1979), and tear-drop curves
for n = 1.25, n = 1.5 and
n = 2 (Morland and
Staroszczyk 1998)

complexity to the model. The elliptic yield curve also allows tensile stresses in ice,
since parts of the curve lie outside the negative principal stress quadrant, as seen in
Fig. 5.4. Gray and Killworth (1995) and Gray (1999) demonstrated that the above
two features of the model (disjoint stress relations in different flow regimes and
the possibility of tensile stress occurrence) can give rise to numerical instabilities
and unsatisfactory computational performance of the model. The issue of the ill-
posedness of the viscous-plastic model was also analysed more recently by Guba
et al. (2013). In order to improve the stability of the numerical algorithm, artificial
dumping terms can be introduced into the model (Hibler 1979), which has become
a common practice in sea-ice modelling, but these additional terms can give rise to
fictitious responses of ice.

While the motivation for the application of a plasticity theory is the large-scale
responseof sea ice being similar to that observed ingranularmaterials, the assumption
that stresses should lie on a precise yield curve is not obvious, and the associated flow
rule (4.42) which gives a strain-rate vector that is normal to the yield curve is less
firm for granular materials than for metals. Gray and Morland (1994) showed that a
non-linearly viscous flow law, continuous for all strain-rates, can restrict the stress
states to lie within an envelope bounded by two close curves at high convergence
rates. Based on the concept by Gray and Morland (1994), a viscous flow law was
developed for sea ice byMorland and Staroszczyk (1998), in which all possible stress
states lie entirely in the negative principal stress quadrant. For this purpose, a class
of bounding envelopes, which asymptote to the principal stress axes Oσ1σ2 as the
principal stresses approach zero, was constructed to be used in combination with the
viscous fluid constitutive relation (4.39) on p. 77. Several such bounding envelopes,
the shapes of which resemble tear drops, are sketched in Fig. 5.4.
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Accordingly, let us consider the class of closed curves in the negative principal
stress quadrant defined by

[
(σ1)

2 + (σ2)
2
]n = 2n P 2n−2 σ1 σ2 , (n > 1), (5.19)

where P denotes the compressive strength of ice, and n is a free parameter greater
than unity. Each curve passes through the stress origin and is symmetric about the
axis σ1 = σ2, and

d σ2

d σ1
→ 0 as σ1 → 0,

d σ1

d σ2
→ 0 as σ2 → 0, (5.20)

confirming the asymptotic behaviour as stress approaches zero. Let C be the point
on the major axis OA at which the width BD is a maximum, then

OA = 21/2 P, BD = 2

[
(n − 1)

(
1

n

)n/(n−1)
]1/2

P , (5.21)

and the length to width ratio, equivalent to the ratio e for the Hibler ellipse, is

OA

BD
=

[
nn/(n−1)

2 (n − 1)

]1/2

. (5.22)

Corresponding to e = 2 used by Hibler (1979), this ratio is 2.000 if n = 1.407, and
we use in the further calculations the rounded value n = 1.5, giving a ratio 2.015.

In order to ensure that the stress states (σ1,σ2) described by the viscous flow law
(4.39) always lie inside an adopted bounding envelope, the ice response functions
φ1(η, γ) and φ2(η, γ) need to be constructed in special forms. The details concerning
the derivation of these forms can be found in the paper by Morland and Staroszczyk
(1998). Here it is only noted that the formulae defining the shear and bulk viscosities
of ice, μ and ζ respectively, are much more involved than those given by relations
(4.46) and (4.47) on p. 80 in the case of the viscous-plastic rheology. Further, the
ratio of the shear to bulk viscosities depends on the strain-rate invariants η and γ,
unlike the viscous-plastic model in which this ratio is constant and equal to e−2.

In Sects. 5.4 and 5.6, discrete (finite-element and smoothed particle hydrodynam-
ics) models for sea-ice dynamics will be formulated, with the aim to use them for
numerical simulations of the large-scale behaviour of an ice pack driven by wind
stresses. It turns out that for the purposes of the numerical modelling, it is convenient
to re-write the general non-linearly viscous fluid law (4.39) in a slightly different
form, namely

σ = [φ1(η, γ)I + φ2(η, γ)D + φ3(η, γ)η I] H(−η), (5.23)
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since this form also incorporates other rheological models, such as the viscous-
plastic (Hibler 1979), cavitating fluid (Flato and Hibler 1992) or viscous fluid model
by Overland and Pease (1988). Thus, a range of different sea-ice rheologies can
be easily incorporated in numerical codes, provided that specific forms of the ice
response functions φ1, φ2 and φ3 expressed in terms of the strain-rate invariants are
implemented.

Although only non-linearly viscous and viscous-plastic rheological models for
large-scale behaviour of sea ice are considered here and then implemented in numeri-
calmodels described further in this chapter, one has tomention alternative approaches
which have been developed since the mid 2000s. One such an approach is an elastic-
decohesive model, proposed by Schreyer et al. (2006). This model is based on meth-
ods known from fracture mechanics and, compared to the viscous-plastic theories,
is much more complex in terms of the formal description. Some examples of the
application of the elastic-decohesive model to the sea-ice dynamics can be found
in the paper by Sulsky et al. (2007). The model was later extended by Sulsky and
Peterson (2011) and used to numerically simulate the motion of the Arctic sea ice.

Usually, on geophysical scales of thousands of kilometres, sea ice is treated by
modellers as an isotropic material. However, observations from satellite imagery
indicate the presence of large-scale oriented features in sea ice caused by the forma-
tion and propagation of wide cracks, the length of which can be in excess of tens of
kilometres. There have already been a few attempts to capture such anisotropic prop-
erties of the sea-ice cover. The most significant contributions to this, still a relatively
new, subject are due to Wilchinsky and Feltham (2004, 2011). The results of the
application of their anisotropic model to the Arctic sea ice behaviour, and compar-
isons with the predictions of the standard isotropic elastic-viscous-plastic model by
Hunke and Dukowicz (1997), can be found in the paper by Tsamados et al. (2013).

Some aspects of the sea ice rheology modelling, including the large-scale
anisotropy of ice, are reviewed in the paper by Feltham (2008).

5.3 Material Formulation of Sea-Ice Equations

Numerical simulations of sea-ice pack flows are usually based on the spatial (Eule-
rian) formulation of the governing equations. This well-established approach has
been successful in solving a variety of problems, but has its limitations. In particular,
it is difficult to deal with problems in which ice pack configuration undergoes large
changes, and the ice pack–open ocean boundaries move over large distances and
substantially change their geometry. These difficulties arise due to problems associ-
ated with the sufficiently accurate tracing of moving boundaries, which is required
for maintaining the stability of numerical schemes applied. For this reason, a natural
way of solving sea-ice flow problems in which large deformations of the initial ice
pack configuration occur is to apply the material (Lagrangian) description, in which
individual material points of the pack are followed in time during an analysis. Com-
pared to the spatial description, the Lagrangian method has a potential of increased
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numerical stability due to the lack of convective terms appearing in the momentum
equations set in the Eulerian framework, thus avoiding spatial interpolations between
discrete nodes of a numerical model. Additionally, the treatment of boundary con-
ditions is much easier in the Lagrangian formulation, since these are imposed on
material surfaces, that is, on the surfaces which do not move in the fixed material
(referential) coordinates.

In order to trace the motion of individual material elements of a sea-ice pack on
the horizontal plane, a fixed in space reference coordinate frame is introduced, which
defines the positions of material points at a reference time, say at t = 0. Hence, a
fixed rectangular Cartesian coordinate system with the origin O is adopted. Let X
denote the position vector, with components Xi (i = 1, 2), describing an ice particle
position relative to O at the reference time; that is, x = X at t = 0. As the ice pack
flow proceeds, at a subsequent time t > 0 a given ice particle moves to a new position
x = x(X, t). The motion of this particle relative to its neighbourhood, measured in
the material coordinates Xi , is described by the deformation gradient tensor F. The
components of this tensor, together with the components of the velocity vector v, are
given by

Fi j = ∂xi
∂X j

, vi = ∂xi
∂t

, (i, j = 1, 2). (5.24)

Now consider all variables as functions of (X, t), but without introducing new
function notation, then the material time derivative D/Dt becomes the partial time
derivative ∂/∂t at fixed X . The initial, or reference, distributions of ice thickness,
ice area fraction and ice velocity will be denoted by h0(X), A0(X) and v0(X). The
required transformation relations are

∂Fi j
∂t

= ∂vi

∂X j
, η = Gi j

∂vi

∂X j
, where Gi j = ∂X j

∂xi
, (5.25)

from which F is calculated by time integration of the material velocity gradient, and
the horizontal dilatation-rate η is expressed in terms of the material velocity gradient
and the components of the tensor G = (FT )−1. Explicit component expressions for
the tensors F and G are given by

F =
(
F11 F12

F21 F22

)
, G = J−1

(
F22 −F21

−F12 F11

)
, (5.26)

where
J = det F = (det G)−1 = F11F22 − F12F21, (5.27)

with J = 1 in the initial, undeformed configuration, in which F = G = I . Bymeans
of the components of the tensor G, the spatial derivatives of a scalar quantity φ are
expressed in terms of the material derivatives by
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∂φ

∂xi
= Gi j

∂φ

∂X j
, (i, j = 1, 2), (5.28)

where the summation convention for a repeated subscript applies.
Let the unit vectorswhich are normal and tangent to a fixed contour in the reference

configuration be n̄ and s̄, respectively. Then their spatial counterparts, n and s, are
given by

n = Gn̄
|Gn̄| , s = Gs̄

|Gs̄| . (5.29)

The latter relations are needed for proper expression of boundary conditions at the
ice pack edges.

With the above transformation rule (5.28), the ice area fraction and thickness
equations (5.1) and (5.2) on p. 136 now become

∂A

∂t
+ Aη [1 − α(A)H(−η)] = 0, (5.30)

∂h

∂t
+ hηα(A)H(−η) = 0 (5.31)

the linear momentum equation (5.15) transforms to

�h
∂vi

∂t
= Ah f (A)G jk

∂σi j

∂Xk
+ A (τai + τwi ) + �h fc εi j3 v j , (5.32)

and the energy equation (5.18) takes the form

∂T

∂t
= κ

�C

∂2T

∂x23
+ kL

2�AC
+ r

�C
. (5.33)

Relations (5.30)–(5.33) form a system of five differential equations for A, h, v1,
v2 and T , once the stress components σi j are determined from the constitutive law
(5.23). Recall that the dilatation-rate η is expressed in terms of the components of G
by relation (5.25)2.

5.4 Finite-Element Model

The system of sea-ice dynamics equations, formulated in the material coordinates in
Sect. 5.3, is solved by a finite-element method. The attention is restricted here to the
mechanical behaviour of a sea-ice pack; hence, the thermal energy balance equation
(5.33) describing the heat conduction and the ice phase changes is excluded from
the analysis. Accordingly, the following system of four first-order partial differential
equations is solved:
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∂A

∂t
+ Aη [1 − α(A)H(−η)] = 0, (5.34)

∂h

∂t
+ hηα(A)H(−η) = 0, (5.35)

�h
∂vi

∂t
− Ah f (A)G jk

∂σi j

∂Xk
− �h fc εi j3 v j = A (τai + τwi ) , (5.36)

with the right-hand side of (5.36) representing ice driving forces due to the wind
stress and water drag, respectively.

The system of equations (5.34)–(5.36), coupled by non-linear terms, is solved by
a weighted residual method (Zienkiewicz et al. 2005), which transforms the problem
to the solution of the system of equations

Mẇ + Kw = f , (5.37)

where the vector w specifies the values of the ice area fraction A, the ice thickness
h and of the two components of the ice velocity v at all N discrete points of the
system under consideration. This vector is composed of the component vectors wk ,
k = 1, . . . , N :

w = (w1, . . . ,wk, . . . ,wN )T , (5.38)

with wk being a four-element vector containing the values of A, h and v at k-th node
of the discrete system; that is

wk = (Ak , hk , v1k , v2k)
T . (5.39)

The matrices M and K , and the forcing vector f , entering (5.37), are aggregated
from the respective element matrices Me, K e and element vectors f e in a way
typical of the finite-element method. Accordingly, the element matrices Me and K e

are composed of Ne × Ne submatrices me
i j and kei j (i, j = 1, . . . , Ne), respectively,

each of dimension 4 × 4, with Ne being the number of nodes in a finite element. The
element matrix Me has the structure

Me =
⎡
⎣ me

11 . . . me
1Ne

. . . me
i j . . .

me
Ne1 . . . me

NeNe

⎤
⎦ , (5.40)

where me
i j is the diagonal matrix

me
i j =

⎡
⎢⎢⎣
m11

i j 0 0 0
0 m22

i j 0 0
0 0 m33

i j 0
0 0 0 m44

i j

⎤
⎥⎥⎦ . (5.41)
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The diagonal entries in me
i j are given by

m11
i j = m22

i j =
∫
Ωe

ΦiΦ j dΩe , m33
i j = m44

i j = �

∫
Ωe

h ΦiΦ j dΩe , (5.42)

with Φi being a shape (interpolation) function, and Ωe denoting a finite element
domain. Sinceme

i j = me
ji , the element matrix Me is symmetric, and, thus, the global

matrix M, assembled from the element matrices, is also symmetric.
The element matrix K e consists of Ne × Ne component submatrices K e

i j of the
structure given by

kei j =

⎡
⎢⎢⎢⎣
k11i j 0 0 0
0 k22i j 0 0
0 0 k33i j k34i j

0 0 k43i j k44i j

⎤
⎥⎥⎥⎦ . (5.43)

The elements k11i j and k
22
i j of the matrix kei j are calculated by integrating the evolution

equations (5.34) and (5.35) for the ice concentration A and thickness h, and are

k11i j =
∫
Ωe

RAΦiΦ j d Ωe, k22i j =
∫
Ωe

RhΦiΦ j d Ωe, (5.44)

with the terms RA and Rh defined by

RA = η [1 − α(A)H(−η)] , Rh = ηα(A)H(−η). (5.45)

The entries k33i j , k
34
i j , k

43
i j and k

44
i j in the matrix kei j in (5.43) are obtained by integrating

the two momentum equations (5.36). Each of these entries can be expressed as a sum
of two terms, kβξσ

i j and kβξc
i j , which are related to internal forces due to the ice stress

gradients and the Coriolis acceleration, respectively; that is

kβξ
i j = kβξσ

i j + kβξc
i j , β, ξ = 3, 4. (5.46)

On account of the general form of the constitutive law (5.23) on p. 142, describing
the stress in ice in terms of the three response functions φ1, φ2 and φ3, the above
components kβξσ

i j of the element matrix kei j are given by

kβξσ
i j =

∫
Ωe

Ah f (A)H(−η)
∂Φi

∂Xn

∂Φ j

∂Xl
×

× [
1
2φ2 (GrnGsl + δrsGmlGmn) + φ3 GrlGsn

]
d Ωe ,

(5.47)

where δrs is the Kronecker symbol, and the indices are
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l,m, n, r, s = 1, 2; β = r + 2, ξ = s + 2. (5.48)

The terms kβξc
i j , arising from the Coriolis forces, are, in turn, defined by

kβξc
i j = −εrs3 � fc

∫
Ωe

h ΦiΦ j d Ωe , β, ξ = 3, 4, (5.49)

with the index connections (5.48) for β and ξ. Recall that εrs3 is the permutation
symbol and fc is theCoriolis coefficient defined by relation (5.16) on p. 139.Note that
kβξσ
i j = kξβσ

j i and kβξc
i j = −kξβc

ji . Thus, the element matrix K e, and hence the global
matrix K , is symmetric if the Coriolis forces are ignored; otherwise the symmetry
of K is lost, which has some numerical consequences (more computer memory is
needed and the time of computations is longer).

Finally, the right-hand side vector f in Eq. (5.37) is aggregated from element
vectors f e:

f e = ( f e1, . . . , f ei , . . . , f eNe
)T , (5.50)

with f ei being a four-element vector containing forces acting at i-th node of a finite
element; that is

f ei = (0, 0, fi3, fi4)
T . (5.51)

The nodal forces fiβ (β = 3, 4) result from both the ice surface stresses generated
by wind and water drag, f w

iβ , and the pressure term associated with the function φ1

in the constitutive law (5.23), f σ
iβ . Hence,

fiβ = f w
iβ + f σ

iβ, (5.52)

with

f w
iβ =

∫
Ωe

AΦi (τar + τwr ) d Ωe ,

f σ
iβ = −

∫
Ωe

φ1Ah f (A)H(−η)
∂Φi

∂Xl
Grl d Ωe ,

(5.53)

where β = r + 2 and r = 1, 2, see the index connections (5.48).
The above relations for the coefficients of the matrices M and K and the forcing

vector f are general in the sense that they hold for any set of the shape functions
Φ j . The latter set of functions depends on the way a given continuous domain is
discretized, that is, on the geometry of finite elements, the number of nodal points
within each element, and a particular form of shape functions adopted. In the model,
the results of which are presented in the following Sect. 5.5, triangular elements with
six nodal points (three vertices and three mid-side points) have been applied, with
the shape functions Φ j being bi–quadratic polynomials. All surface integrals have
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been calculated numerically by applying Gauss–Legendre quadrature formulae with
seven sampling points within triangular elements (Zienkiewicz et al. 2005).

The system of first-order in time differential equations (5.37) has been integrated
in the time domain by employing a single-step implicit algorithm. Within each time
step, due to the non-linearity of equations and the dependence of the matrices M and
K and the vector f on the solution vectorw, the system of equations has been solved
iteratively by using a direct (Picard) iteration scheme to achieve convergence. The
time stepping has been carried out by the weighted residual θ-method (Zienkiewicz
et al. 2005). Application of thismethod reduces (5.37) to the solution of the following
system of algebraic equations:

(M + �t θK )wn+1 = [M − �t (1 − θ)K ]wn + �t f̄ , (5.54)

which relates the solutions wn and wn+1 at two instants tn and tn+1. In (5.54), �t =
tn+1 − tn is the time step length, θ is the weighting parameter, and f̄ is the time-
averaged forcing vector. For a linear variation of f between tn and tn+1, the forcing
vector f̄ is given by

f̄ = (1 − θ) f n + θ f n+1. (5.55)

In the calculation, the value θ = 0.7 has been adopted, though it has been found
that using other values θ from the range 0.5 ≤ θ ≤ 1 does not significantly affect
the numerical performance of the above time-integration scheme (Morland and
Staroszczyk 1998).

5.5 Finite-Element Numerical Simulations

The accuracy and numerical stability of the finite-element algorithm presented in
the preceding section has been tested by comparing its predictions with a class of
exact analytical solutions to specific one-dimensional ice flow problems (Morland
and Staroszczyk 1998). For these problems, involving the formation and subsequent
motion through an ice pack of a moving interface separating regions of converging
and diverging flows, analytic solutions have been constructed by applying an inverse
method. It has turned out that a very good agreement between the discrete and analytic
results has been achieved for three particular cases considered. These preliminary
tests also enabled the analysis of the effect of the mesh resolution on the accuracy of
finite-element results in the context of two-dimensional simulations described below.

The first two-dimensional ice pack flow problem solved numerically by the pro-
posed finite-element model is depicted in Fig. 5.5a. In this problem, the ice pack
initially occupies a rectangular domain 0 ≤ x1 ≤ 25 km, 0 ≤ x2 ≤ 50 km. Two adja-
cent sides of the rectangle, denoted by Γ1 and Γ2, are solid boundaries, and the other
two, Γ3 and Γ4, are moving open water boundaries, the position of which must be
tracked with the solution. Both converging and diverging zones arise during the ice
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(a) (b)

Fig. 5.5 a Rectangular ice pack with two solid (Γ1 , Γ2) and two open water (Γ3 , Γ4) boundaries,
driven by a uniform wind stress applied in the negative direction of the x2-axis. b Initial distribution
of ice concentration A

pack flow, therefore this problem contains all the features which occur in realistic
sea ice flows, and is an instructive test for the stability of a numerical model.

The ice pack is assumed to be at rest at time t = 0, and is driven by a steady
wind stress of the constant magnitude τa acting along the negative x2-axis direction.
Initially, the ice has a uniform mean thickness h0 and the ice area fraction A0 is
assumed to vary linearly in the x1-axis direction, from A0 = 1 at the coast Γ1 to
A0 = 0.7 at the ice edge Γ3 (see Fig. 5.5b). Accordingly, the initial conditions can
be expressed by

t = 0 : v1 = v2 = 0, h = h0, A = A0 = 1 − 1.2 × 10−5x1. (5.56)

At the solid boundaries Γv = Γ1 ∪ Γ2, either bonded (no-slip and zero normal veloc-
ity) or free-slip conditions are adopted. In the former case it is assumed that both
velocity components are zero, while in the latter case the velocity component normal
to the coast and the ice traction component tangential to the coast vanish. The open
water boundaries Γσ = Γ3 ∪ Γ4 are assumed to be stress-free. Hence, the no-slip
boundary conditions are expressed by

(X1 , X2) ∈ Γv : v = 0, (5.57)
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the free-slip conditions are defined by

(X1 , X2) ∈ Γv : v · n = 0, s · (σn) = 0, (5.58)

and the stress-free conditions are given by

(X1 , X2) ∈ Γσ : n · (σn) = 0, s · (σn) = 0. (5.59)

In the above expressions n and s denote unit vectors normal and tangential to the
respective boundary (which, in general,moves and deforms).Recall that these vectors
are related to their counterparts n̄ and s̄ in the referential (initial) configuration by
the formulae (5.29) on p. 145.

Below are shown the results of simulations carried out for a rectangular ice pack
driven by the uniform wind stress of a magnitude τa = 0.05 Pa acting over a period
of three days. The calculations were performed for a linearly viscous flow law (4.39),
with the ice viscosities μ = ζ = 5 × 108 Pa s. The initial ice thickness was h0 =
2 m, and the parameter A f = 0.5 was adopted to define the critical ice concentration
at which the ice ridging process starts, see the definition of the ridging function α(A)

given by Eq. (5.6) on p. 137. The time integration of finite-element equations was
carried out with the time step length �t = 360 s.

The plots in Fig. 5.6 show the results of simulations obtained for the free-slip
conditions (5.58) at the solid boundaries. The figure illustrates the evolution of the
ice velocity field v, the ice concentration A and the ice mean thickness h, and the
respective plots correspond to the integration times of one, two and three days. It is
seen that over the period of three days the ice pack undergoes significant deformation
in the horizontal plane, with parts of the open water boundaries (Γ3 and Γ4) moving
by a distance of about 20 km in the x2-axis direction, and by about 8 km in the
lateral x1-direction. It can be observed in the velocity vector plots that the pack flow
slows as the ice concentration gradually increases (Fig. 5.6b) and the pack becomes
thicker (Fig. 5.6c) due to the ice ridging process. While the ice concentration A
changes slowly throughout the whole pack as the ice field deforms, the ice thickness
h increases considerably (by more than 50%) near the coastline x2 = 0.

The corresponding results obtained for the case of the no-slip conditions at the
solid boundaries Γ1 and Γ2 can be found in the paper by Morland and Staroszczyk
(1998). In this, probably less realistic, situation than the above-presented free-slip
case, the flow of ice is more affected by the presence of the rigid boundaries, and
the predicted distributions of the ice concentration A and the ice thickness h are less
uniform than those displayed in Fig. 5.6.

The problem depicted in Fig. 5.5 has been also solved by adopting the viscous-
plastic rheological model for sea ice. The results of simulations, again for the free-
slip conditions assumed at the solid boundaries Γ1 and Γ2, are presented in Fig. 5.7.
The simulations have been conducted for the compressive strength parameter P =
5 × 103 Pa, the rheological parameter e = 2 and the critical dilatation-rate �c =
2 × 10−9 s−1 (Schulkes et al. 1998).
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Fig. 5.6 Evolution of a rectangular ice pack driven by wind, for the viscous fluid rheology. Free-
slip conditions are adopted at the solid boundaries Γ1 and Γ2. Plots a the velocity vector field v

after one, two and three days; b the ice area fraction A after one, two and three days; and c the ice
thickness h after one, two and three days. Reprinted fromMorland and Staroszczyk (1998), Fig. 6,
with permission of the Royal Society of London
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Fig. 5.7 Evolution of a rectangular ice pack driven by wind, for the viscous-plastic rheology. Free-
slip conditions are adopted at the solid boundaries Γ1 and Γ2. Plots of the velocity vector field v

a after one day, b after two days, c after three days. Contour plots of d the ice concentration A, e the
velocity divergence η (in units 10−5 s−1) and f the shear strain-rate invariant γ (in units 10−5 s−1),
after one day. Reprinted with permission from Schulkes et al. (1998), Fig. 3. Copyright 1998 by
John Wiley and Sons
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Fig. 5.8 Rectangular ice
pack with three solid
boundaries (Γ1, Γ2 and Γ3)
and one open water boundary
(Γ4), driven by a geostrophic
vortex wind field, with the
vortex centre, denoted by the
cross, located at the open sea

Figure 5.7a–c show the vector plots of the ice velocity field after one, two and
three days, respectively, and Fig. 5.7d–f display the ice concentration A, the velocity
divergence η, and the shear strain-rate invariant γ after one day. It is seen that, as the
pack is driven towards the solid boundary Γ2, the ice area fraction A increases near
this boundary, but the largest relative changes in the ice concentration are observed
near the open water edge Γ3 , initially at x1 = 25 km, where the maximum change
equals about 30% (from 0.7 to around 0.9). In contrast, the relative changes in the
ice thickness h are less than 1%. Further, it is seen that close to the solid boundary
Γ2 the pack is significantly stretched in the lateral x1-direction. Figure 5.7f shows
the concentration region of high shear strain-rate invariant γ, which is characteristic
of materials in which plastic yield occurs, and reflects the rapid change in the ice
velocities across the narrow plastic slip band seen in the vector plots in Fig. 5.7a–c. In
regions where the stress magnitudes are smaller than the yield stress level defined by
the parameter P , the ice cover behaves as a viscous medium which undergoes rela-
tively small deformations compared to the plastic strains.More examples, illustrating
the behaviour of the wind-driven ice pack shown in Fig. 5.5 for other rheological
models (for instance, the cavitatingfluidmodel) can be found in the paper bySchulkes
et al. (1998).

The non-linearly viscous rheologicalmodelwith the tear-drop bounding envelope,
described in Sect. 5.2.4, has been applied to a test problem considered by Flato
(1993). In this problem, an ice pack initially occupies a rectangular domain 250 km ×
500 km, see Fig. 5.8. Three sidesΓ1,Γ2 andΓ3 of the ice pack domain are constrained
by solid boundaries, and the fourth side Γ4 is an open water boundary.

It is assumed that the ice pack is driven by a vortex geostrophic wind field, with
the vortex centre, marked by the cross in the figure, located at the open sea at a
distance of 50 km from the initial line of the ice edge Γ4. The wind velocity field is
defined by (Flato 1993)

ua(R) = min

(
ωa R,

Λ

R

)
k × R

R
, (5.60)
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where ua is the geostrophic wind velocity vector, R is the vector radius from the
vortex centre and R is its magnitude, ωa = 5 × 10−4 s−1 is an angular velocity, Λ =
8 × 105 m2 s−1, and k denotes an upward vertical unit vector.With these parameters,
the wind velocity ua increases linearly form zero at the vortex centre to its maximum
value 20 m s−1 at a distance of R = 40 km from the vortex centre, and then gradually
decreases with increasing R, so that ua = 4 m s−1 at R = 200 km, and ua = 2 m s−1

at R = 400 km, etc. In order to calculate the ice surface and basal tractions, τa and
τw respectively, caused by the wind and water current action, see Eq. (4.77) on p. 98,
the wind, ua , and ice, v, velocity vectors must be rotated on the horizontal plane by
applying the relations

ūa = ua cos θa + k × ua sin θa , (5.61)

v̄ = v cos θw + k × v sin θw . (5.62)

In the latter expressions, θa and θw are the wind and water turning angles, associated
with the planetary boundary layer; both these angles are assumed to be equal to 25◦.

The finite-element simulations were carried out for the initially uniform ice
pack thickness and concentration, adopting h0 = 1 m and A0 = 0.9. The rheo-
logical properties of the ice were defined by the compressive strength parameter
2.75 × 104 Pa (Flato 1993), the critical dilation-rate parameter ηc = 10−5 s−1 (Mor-
land and Staroszczyk 1998), and the critical ice concentration A f = 0.5 that defines
the onset of the ice ridging process. The finite-element mesh consisted of 400 tri-
angular elements with six nodes each, so that the discrete system had 3444 degrees
of freedom. The free-slip conditions (5.58) were adopted at the solid boundaries Γ1,
Γ2 and Γ3. The results of a five-day integration, performed with the time step length
�t varying from 36 to 900 s, are presented in Fig. 5.9. The plots in Fig. 5.9a–d
illustrate the evolution of the finite-element grid in space, showing the changes in the
deformation and position of material elements of the ice pack. These plots demon-
strate well the capacity of the applied material coordinate approach of dealing with
the problems in which an extensive evolution of free boundaries occurs. Figure 5.9e
displays the distribution of the mean ice thickness h after five days, and shows that
the ice thickness growth due to the ridging process is confined to relatively small
regions near the coastlines, with the most significant increase, by about 80% of the
initial value h0, taking place near the boundary Γ3. Finally, Fig. 5.9f illustrates the
ice velocity field v after the five-day simulation.

5.6 Smoothed Particle Hydrodynamics Model

In Sect. 5.4, a discretemodel based on the conventional finite-elementmodel is devel-
oped to solve the sea-ice dynamics equations formulated in thematerial (Lagrangian)
coordinates. The model requires the calculation of the material deformation and
velocity gradients and their evolution throughout the whole time of simulation,
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Fig. 5.9 Evolution of a rectangular ice pack driven by a geostrophic vortex wind, for the non-
linearly viscous fluid rheology with a bounding envelope. Free-slip conditions are adopted at the
solid boundaries Γ1, Γ2 and Γ3. a Finite-element mesh at the start of simulation, with the cross
representing the wind vortex centre; b, c and d the mesh after one, three and five days, respectively;
e the ice thickness distribution after five days; f the ice velocity vector field after five days. Reprinted
from Morland and Staroszczyk (1998), Fig. 10, with permission of the Royal Society of London

beginning from the initial, undeformed configuration of an ice pack. In case of large
ice displacements and deformations, the finite-element mesh can become highly dis-
torted, as is seen in Fig. 5.9, and this, in turn, results in inaccurate evaluation of the
deformation gradient components and the accumulation of numerical errors, eventu-
ally leading to the loss of stability of a numerical scheme. In order to effectively solve
such numerically challenging problems, in which large deformations of a material
occur, or fronts of material discontinuity develop and propagate, a family of so-called
mesh-free discrete methods has been invented. In this section, a discrete model based
on the approach known as the smoothed particle hydrodynamics (SPH) method is
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formulated. In recent years, this is one of the most extensively developed mesh-free
methods.

The SPH method was invented, independently, by Lucy (1977) and Gingold and
Monaghan (1977), but for nearly two decades its use was solely restricted to the field
of astrophysics. Only in the mid 1990s, when the full potential of this method was
recognized, the SPH method brought attention of the solid mechanics community,
and ever since the interest in the method has been steadily growing. Consequently, it
has found successful applications in many disciplines of physics, applied mechanics
and engineering—multiple examples of its applications can be found in two review
papers by Monaghan (2005, 2012). Compared to other fields of applied mechanics,
the application of the SPH method to problems involving sea ice has been rare. The
first applications of the SPH approach to the sea-ice modelling were due to Gutfraind
and Savage (1997, 1998), who simulated the behaviour of ice in the open sea; that is,
in the absence of solid boundaries (coasts), which significantly simplifies numerical
calculations. Another example was the work by Shen et al. (2000), in which the SPH
approach was employed to simulate the flow of river ice, with a focus on its jamming,
in which case the movement of ice is severely restricted by solid boundaries (river
banks) and is, essentially, nearly one-dimensional along a river. A typical sea-ice
pack evolution problem, which is analysed here, can be considered as an in-between
case, involving both extensive boundaries along which the ice interacts with open
sea, and extensive boundaries along which the ice interacts with a coast.

The major idea of the SPH approach consists in representing a continuum by a
collection of discrete material particles, each of which carries, in a fully Lagrangian
sense, all information on local physical properties (such as mass, velocity, tem-
perature, etc.) of the body under consideration. Since no pre-defined connections
between discrete particles are required in the SPH approach, the method has a great
flexibility in dealing with large deformations, material fragmentation, propagation
of discontinuity surfaces, etc. In order to approximate field variables in terms of their
values given at discrete particles, special interpolating functions, often referred to as
smoothing kernels, are applied. Typically, a smoothing kernel has non-zero values
only in a small domain, called the kernel support (usually the latter has a shape of
a circle in two-dimensional problems). The characteristic size of the kernel support
is defined by a kernel radius R. These basic SPH features and ideas are sketched in
Fig. 5.10. Details on the SPHmethodology can be found in the literature, for instance
in the papers byMonaghan (1992, 2005, 2012), or in the books by Li and Liu (2004)
and Violeau and Issa (2007).

The values of field variables at any point x of a continuum are calculated by
summations of weighted contributions from all particles contained within the ker-
nel support domain of radius R, with the weights determined by the values of the
smoothing kernel function,W . Similarly, the spatial derivatives of field functions are
evaluated by summation formulae involving spatial derivatives of the smoothing ker-
nel functions (both the kernel functions and their derivatives are defined by analytical
expressions). Accordingly, the value of a function f at position xa is evaluated by
means of a kernel function W centred at this particle, by applying the formula
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Fig. 5.10 The method of approximation of field variables in the SPH method. The approximation
at a reference particle xa (solid square) involves material particles xb (solid circles) situated within
a circular support domain of radius R centred at xa . Particles outside the support domain (empty
circles) do not contribute to the approximation of field functions at the reference particle xa . W
denotes a smoothing kernel function centred at xa .

fa = f (xa) =
N∑

b=1

Vb fb W (rab) . (5.63)

In Eq. (5.63), and in the remaining part of this section, the symbols a and b are used
to denote discrete particle labels. fa = f (xa) is a discrete value of f at particle a, N
denotes the number of discrete particles currently located within the kernel support
domain of particle a, Vb is the volume of particle b, and rab = |xab| = |xa − xb| is
the distance between particles a and b.

In order to express the differential equations describing the problem in discrete
forms, SPH approximations of differential operators are required. Inspection of the
mass conservation balance equations (5.1) and (5.2) on p. 136 and the momentum
equation (5.14) on p. 139 shows that only the approximations of the divergence
operators for vector and tensor fields are needed in the analysis. These approximations
are adopted in the forms recommended by Monaghan (1992) and Gray et al. (2001):

(div f )a = − 1

�a

N∑
b=1

mb fab ·∇aWab (5.64)

and

(div A)a = �a

N∑
b=1

mb

(
Aa

�2a
+ Ab

�2b

)
·∇aWab . (5.65)

In these expressions, f and A denote, respectively, a vector and a two-dimensional
tensor fields, �a is the density of particle a, mb is the mass of particle b, and
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fab = fa − fb. ∇aWab denotes the gradient of the kernel function W centred at
particle a and calculated at particle b. This gradient is defined by

∇aWab = xab
rab

∂W (rab)

∂rab
. (5.66)

Application of the divergence operator approximations (5.64) and (5.65) to dif-
ferential equations (5.1), (5.2) and (5.14) yields

d Aa

d t
= −Aaηa [1 − α(Aa)H(−ηa)] , (5.67)

d ha
d t

= −haηaα(Aa)H(−ηa), (5.68)

d va

d t
= �a

�
Aa f (Aa)

N∑
b=1

mb

(
σa

�2a
+ σb

�2b

)
·∇aWab + Aa

�ha
(τa + τw)a . (5.69)

The above equations must be supplemented by constitutive relations for the stressσ;
for the illustrations presented in the next section, the viscous-plastic flow law defined
by Eq. (4.49) on p. 81 has been used. In the momentum equation (5.69), the Coriolis
acceleration term has been ignored, as the Coriolis effect can be neglected on the
moderate length scales of hundred kilometres considered here. In view of (5.64), the
ice dilatation-rate η = div v, when approximated at particle a, is given by

ηa = (div v)a = − 1

�a

N∑
b=1

mb vab ·∇aWab , (5.70)

where vab = va − vb. In addition to relations (5.67)–(5.69), in order to track the
motion of ice on the sea surface, a trajectory equation has also to be solved for each
discrete particle:

d xa
d t

= va . (5.71)

It should be noted at this point that there is an important qualitative difference
between the ice intrinsic density �, which is constant in time, and the densities �a and
�b of discrete material particles, which change in time. The latter densities connect
discrete particlemassesma (which remain constantwhen there are no thermodynamic
processes involved, or vary in time otherwise) with discrete particle volumes Va

(which change in time as the ice pack deforms) through the equation

ma = �aVa . (5.72)

The particle density �a , in turn, is related to the local ice concentration Aa and the
local ice thickness ha by the formula

�a = �Aaha . (5.73)
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Thus, the particle density �a expresses the mass of ice per unit surface of the sea, so
that it has the meaning of a partial density, and the physical unit kg m−2.

The system of equations (5.67)–(5.69) and (5.71) set for each particle a of the
discrete representation of a sea-ice pack is equivalent to six scalar relations for six
unknown field functions: ice concentration A, ice thickness h, two components of
the ice velocity vector v, and two components of the position vector x. This system
of six equations was integrated in the time domain by applying a predictor-corrector
method (Staroszczyk 2011), with a Courant-Friedrichs-Levy (CFL) condition used
for controlling the stability of computations. The smoothing kernel function W was
adopted in the form of a quintic spline function proposed by Morris (1996). In order
to increase the accuracy of the approximation of field variables at discrete particles
near the ice pack boundaries, standard kernels and their gradients were modified by
following a method proposed by Belytschko et al. (1998) (this technique is known in
the literature as the corrected smoothed particle hydrodynamics, C-SPH). One of the
issueswhich has not been yet resolved satisfactorily in the SPH is the implementation
of boundary conditions at solid boundaries (here given by Eqs. (5.57) and (5.58) on
p. 150). From among a number of techniques that are known in the literature, a
method proposed by Cummins and Rudman (1999) was applied, in which so-called
ghost (virtual) particles are generated outside solid boundaries to mirror physical
properties of corresponding particles in the ice flow domain.

5.7 SPH Numerical Simulations

TheSPHmodel presented in the previous sectionwas applied to simulate the dynamic
behaviour of a sea-ice pack driven by a vortex wind field in the geometric configura-
tion illustrated in Fig. 5.8 in Sect. 5.5. A very similar flow configuration was adopted
by Li et al. (2014) for ice pack evolution simulations by applying another particle
method, namely the discrete-element method (DEM).

In the SPH simulations, the ice response was described by the viscous-plastic flow
law (4.49) on p. 81, assuming zero tensile strength of ice (P2 = 0). More results,
obtained for a different ice rheology and other flow configurations, can be found in
the paper by Staroszczyk (2017). The initial ice flow conditions at time t = 0 were
prescribed by

A(x, t0) = A0(x), h(x, t0) = h0(x), v(x, t0) = 0. (5.74)

The boundary conditions at the ice pack–open sea interfaces were assumed to be
stress-free, and the conditions at the ice–solid boundaries were taken as either bonded
(zero tangential and normal velocities), see (5.57), or slip-free (zero tangential trac-
tion and zero normal velocity), see (5.58).

As in Sect. 5.5, the numerical computations were performed for the initially
500 km × 250 km rectangular pack, with the wind vortex centre located 50 km off
the initial open sea–ice pack edge Γ4 (see Fig. 5.8). The results presented below have
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been obtained for the maximum vortex wind velocity ua = 10 m s−1. The initial ice
thickness was h0 = 1 m and the initial ice concentration was A0 = 0.7, with the
critical concentration level A f = 0.5. The viscous-plastic rheological model param-
eters were: P1 = 5 kPa, e = 2 and �c = 2 × 10−9 s−1. The computational grid in
the initial configuration consisted of 80 × 40 = 3200 discrete particles uniformly
distributed along the directions of both coordinate axes, with the initial inter-particle
spacings 6.25 km. Free-slip conditions were adopted along the three coastlines Γ1,
Γ2 and Γ3 for the illustrations presented below.

The results of simulations have shown that the SPH model easily treats large ice
pack deformations and large displacements of the ice pack–open sea boundary. This
is illustrated by the plots in Fig. 5.11, showing the evolution of the ice pack domain
and displaying discrete particle distributions at the start of the flow and after five, ten
and fifteen days of the ice flow. The colours of the particles have no physical meaning
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Fig. 5.11 Evolution of the initially rectangular ice pack in the flow configuration shown in Fig. 5.8,
with free-slip conditions along coastlines. Discrete particle distributions at the start of flow and after
5, 10 and 15 days
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Fig. 5.12 Evolution of the initially rectangular ice pack in the flow configuration shown in Fig. 5.8,
with free-slip conditions along coastlines. Ice concentration distributions after 6, 9, 12 and 15 days
(A0 = 0.7)

and are used only for the purpose of illustrating the pattern of the deformation field.
One can see that the displacements of the material particles of ice, after fifteen days,
exceed 120 km (the ‘tongue’ of the ice pack), with smaller displacements of around
60 km occurring along the solid boundaries Γ1 and Γ3.

The following Fig. 5.12 illustrates the evolution of the ice concentration field
A(x, y, t), displaying the ice area fractions after six, nine, twelve and fifteen days
of the simulations. It can be noted that the largest increase in the ice area fraction
A, from its initial value A0 = 0.7, occurs along the coastline Γ3, towards which the
ice is pushed by the vortex wind field. A relatively smaller increase in A is observed
along the coastline Γ2, with the maximum values occurring around x ≈ 150 km.
A significant increase in the ice concentration also takes place at the tip of the
ice pack tongue, which may appear surprising; however, the same feature was also
predicted by theDEMcalculations (Li et al. 2014) inwhich sea icewasmodelled as an
elastic-viscous-plasticmaterial. On the other hand, the ice concentration significantly
decreases near the coastline Γ1 and the ice–open sea boundary Γ1 (except for the
ice tongue), where the ice pack flow is divergent. In contrast to the ice area fraction
field, changes in the ice thickness h(x, y, t) are essentially confined to the vicinity
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Fig. 5.13 Evolution of the initially rectangular ice pack in the flow configuration shown in Fig. 5.8,
with free-slip conditions along coastlines. Ice thickness distributions after 10 and 15 days (h0 =
1.0 m)

Fig. 5.14 Evolution of the profiles of ice concentration and ice thickness along the coastline at
x = 500 km in the ice pack flow problem defined in Fig. 5.8. The same labelling applies to both
plots

of the solid boundary Γ3, as can be seen in Fig. 5.13, displaying the ice thickness
distributions after ten and fifteen days of the pack flow. Corresponding to the results
shown in Figs. 5.12 and 5.13 are the plots in Fig. 5.14, illustrating changes in time
of the ice concentration and ice thickness along the coastline Γ3 at x = 500 km (that
is, along the y-axis direction). The right-hand ends of the curves show the changing
y-position of the ice pack–open sea boundary along the coastline Γ3.
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Chapter 6
Micro-mechanical Models for Polar Ice

In the problems discussed in Chaps. 4 and 5 devoted to the mechanics of sea ice, the
macroscopic anisotropy of ice plays a limited role, and its onlymanifestation of some
practical importance is the depth variation of mechanical properties of land-fast ice
that was formed under still water conditions, as illustrated in Fig. 2.1 on p. 10. For
this reason, the anisotropy of ice is usually ignored in sea ice applications, maybe
except for some specific small-scale cases in which the elastic, not creep or brittle,
response of floating ice is important.

A completely different situation takes place when the mechanical behaviour of
grounded polar ice is considered. In general, such ice is macroscopically strongly
anisotropic, and only the upper, relatively thin (on the typical depth scales of large
polar ice caps) layers of ice can be treated as an isotropic medium. Moreover, on the
long geophysical time scales characteristic of polar ice, the macroscopic anisotropy
evolves during the passage of ice through the depth of an ice sheet, as described
in Sect. 2.2. This evolution of the macroscopic properties of ice and its microstruc-
ture (ice fabric) is due to the response of the polycrystalline material to changing
stress and strains configurations by the mechanism of induced anisotropy. All these
macroscopic changes have its source in the processes occurring at the level of a
single crystal of ice. Thus, to understand and properly describe the behaviour of ice
on the macroscopic level, one must first understand and describe the behaviour of
a single crystal of ice embedded in a polycrystalline aggregate. Only then, on the
basis of microscopic constitutive laws for a single crystal, can we attempt, by apply-
ing homogenization methods, to derive macroscopic constitutive equations relating
macroscopic stresses to macroscopic strains and strain-rates in ice. The formulation
of such micro- and macroscopic laws for polar ice is the subject of this chapter.

As already discussed in Chap. 3, the main mode of deformation of polycrystalline
ice on long time scales is its creep. Therefore, in order to formulate constitutive laws
describing the creep flow of polar ice, only creep properties of a single crystal need
to be considered, and hence the elastic and viscoelastic microscopic properties can
be ignored in the analysis as being unimportant. The creep of a single crystal of
ice is the irreversible deformation which results from the movements of dislocations
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(a) (b) (c)

Fig. 6.1 Three crystallographic slip planes in ice Ih crystals

(dislocation glides) within the crystal (refer to Sect. 3.2). These dislocation glides
occur along a set of characteristic crystallographic planes, forming a slip system.
Basically, in the hexagonal ice Ih crystals (see Fig. 3.3 on p. 24) there are three
preferential slip planes, illustrated in Fig. 6.1.

As follows from the diagram in Fig. 3.6 on p. 29, the creep deformation by basal
slip requires, at a given strain-rate, stress levels which are by up to two orders of
magnitude smaller than those needed for creep in other, non-basal, slip planes, such as
the prismatic or pyramidal planes. Therefore, one can assume that nearly all the creep
deformation in an ice crystal takes place by slip on its basal planes, called for this
reason easy glide planes. The presence of the easy glide planes in individual crystals
has the consequences for the deformation mechanisms occurring in a polycrystal.
This is illustrated, in an idealized manner, in Fig. 6.2, showing the behaviour of an
aggregate composed of a set of crystallites (represented by thin sheets, with their
normal vectors being the crystal c-axes), and sliding relative to each other along the
crystal basal planes. It is seen that when the polycrystal is subjected to tensile stresses
acting along a certain direction, then the individual crystal c-axes rotate away from
this direction. And vice versa, when compressive stresses act on a polycrystal along
some direction, then the crystal c-axes rotate towards this direction. This ‘deck of
cards’ analogue is certainly a simplification of the real behaviour of a polycrystalline
ice aggregate, but illustrates well the major features of the deformation due to the
mechanism of the crystal lattice rotation, also known as the mechanism of rotation
recrystallization. This mechanism is responsible for the development of the oriented
microstructure of polycrystalline polar ice, or the ice fabric, observed in ice samples
extracted from bore cores drilled in Antarctica and Greenland (Alley 1992; Gow
et al. 1997; Thorsteinsson et al. 1997; Gow and Meese 2007; Durand et al. 2009;
Faria et al. 2014).
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Fig. 6.2 Idealization of the crystal lattice rotation mechanism

In what follows in this chapter, a number of micro-mechanical models describing
the behaviour of polycrystalline ice are formulated. These models have been devel-
oped with the aim to capture the main micro-mechanisms observed in natural ice
which have effect on the formation and evolution of the anisotropic properties of the
material. First of all, the mechanism of the crystal lattice rotation is incorporated, by
which the crystal c-axes gradually rotate towards the principal axes of compression
and away from the principal axes of tension, giving rise to strong fabrics found in
deep regions of large polar ice sheets. The other important micro-process that should
be accounted for in the models is the mechanism of dynamic recrystallization (see
Sect. 2.2). By this mechanism, in turn, due to high shear stresses and high tempera-
tures in near-bottom regions of polar ice sheets, the strong fabrics that have earlier
developed in ice are destroyed in an abrupt (on geophysical time scale) manner.

The first micro-mechanical models for polycrystalline ice were formulated in the
mid-1990s. Azuma (1994, 1995) proposed a model, in which an individual crystal
is assumed to deform only by basal slip, and the microscopic stress acting on each
crystal is related to the bulk macroscopic stress in a way determined on the basis of
experimental results. Van der Veen and Whillans (1994) adopted a similar approach,
by supposing that the only active slip system during the creep deformation of a
grain is that associated with basal gliding, but, following Lliboutry (1993), they
made an assumption of a uniform stress in a polycrystal, requiring that the stress
in each grain is equal to the macroscopic stress applied to the polycrystal. A more
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general model, based on the theory developed by Hutchinson (1976) and extended
by Molinari et al. (1987), was constructed by Castelnau et al. (1996). In their model,
known in the literature as the viscous-plastic self-consistent (VPSC) model, crystal
slips on basal, prismatic and pyramidal planes are incorporated. An approach based
on the cellular automata method was developed by Ktitarev et al. (2002) and Faria
et al. (2002). However, this model, as restricted to one-dimensional deformations,
is unsuitable for polar ice sheet flow simulations. A distinct approach was followed
by Faria et al. (2003) to construct a general theory of recrystallization processes in
polycrystalline materials by employing the general principles of thermodynamics.
Subsequently, this theory was extended by Faria (2006) to describe the behaviour of
polycrystalline ice. Due to a multitude of material parameters appearing in this very
general constitutive description, it is difficult to implement it in numerical ice flow
models. A formally much simpler model was proposed by Placidi et al. (2010), in
which the recrystallization mechanism is described by means of only one parameter.
An interesting attempt to incorporate the effects of inter-crystal interactions on the
development and evolution of fabric in ice was undertaken by Kennedy et al. (2013).

Another group of micro-mechanical models, which can be called micro-
macroscopic formulations, is represented by the papers by Svendsen and Hutter
(1996), Meyssonnier and Philip (1996), Gödert and Hutter (1998), Gagliardini and
Meyssonnier (1999) and Gagliardini et al. (2001). All these models are based on the
assumption that each material point of a polycrystalline aggregate contains crystals
of all possible orientations, and the distribution of these orientations is defined by a
continuous function, the evolution of which describes the changes in the anisotropic
properties of the medium. Various aspects of the modelling of polycrystalline ice
mechanics are discussed in a review paper by Placidi et al. (2006).

The models presented below belong to the class of so-called multi-grain (or
discrete-grain) models (Staroszczyk 2001, 2002, 2004, 2009, 2011). Such mod-
els are based on an approach that seems to be physically reasonably well motivated,
in which a material point of the polycrystalline material is represented by a finite
number of discrete grains. Each individual grain in the aggregate is treated as a trans-
versely isotropic and linearly viscous body, and its behaviour is followed separately
from other grains. Non-linearity of the material behaviour can be accounted for by
relating the ice viscosity to a function of strain-rate or stress invariants, in a manner
typical of theoretical glaciology. The macroscopic response of the whole polycrystal
is derived from the responses of all constituent crystals by applying one of homoge-
nizationmethods; here twomethods, known as the uniform-stress and uniform-strain
approaches, are employed. The parameters of the presented micro-mechanical mod-
els have been determined by correlations with available experimental data for the
observed limit behaviour of natural ice at large strains. The predictions of the models
illustrate the evolution of anisotropic fabrics in ice and the variation of macroscopic
viscosities of polycrystalline ice in simple flow simulations.

An alternative method to that described in this chapter, in which the constitutive
laws for polar ice are constructed by applying a fundamentally different, namely
phenomenological approach, is presented in Chap. 7.
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6.1 Single Crystal Kinematics

Due to the transverse isotropy of the elementary hexagonal crystal of ice, with the
axis of rotational symmetry coinciding with the crystal c-axis, the changing position
of the crystal in space can be uniquely defined by the orientation of a unit vector
aligned along the c-axis. Hence, we introduce a unit vector c along the crystal c-axis,
and two angles: the zenith angle θ (0 ≤ θ ≤ π/2) and the longitude ϕ (0 ≤ ϕ ≤ 2π),
which define the orientation of the crystal in a fixed rectangular Cartesian reference
frame Oxi (i = 1, 2, 3), see Fig. 6.3. Since in some instances it is more convenient
to describe the microscopic behaviour and material properties of a single crystal in
a reference frame associated with that crystal, rather than in the global co-ordinates
Oxi , we also adopt a local rectangular frame Oxci (i = 1, 2, 3), moving together with
the crystal. The axes of the local frame are chosen in such a way that xc3 coincides
with the direction of the c-axis (the vector c), xc1 lies in the plane Ox3xc3, and xc2 has
the direction that preserves the right-handedness of the local coordinate system. All
tensor quantities, the components of which are expressed in the moving local frame
will be indicated by the superscript ‘c’, and those expressed in the fixed global frame
will be left without any suffix.

The transformation of components of non-scalar quantities from the local to the
global reference frame is described by means of the rotation tensor R, the compo-
nents of which are defined by

R =
⎛
⎝
cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

⎞
⎠ . (6.1)

Fig. 6.3 Transversely isotropic hexagonal ice crystal and local and global coordinate frames, with
the longitude (azimuth) angleϕ and the zenith angle θ defining the changing crystal c-axis orientation
in space
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Since the local frame Oxci moves relative to the fixed global frame Oxi , the above
(orthogonal) rotationmatrix is time-dependent; that is, R = R(t).Hence, the position
vectors in both coordinate systems, x and xc, are related by

x = R(t) xc, xc = RT (t) x, (6.2)

where RT is the transpose of R. Further, in view of Eq. (6.2)1, the velocity fields
observed in the global and local frames, v and vc respectively, transform by

v = ẋ = Ṙxc + Rvc, (6.3)

where the superposed dots denote time derivatives. Differentiation of the velocities
v and vc with respect to the spatial coordinates yields the velocity gradients L and
Lc measured in both frames, with components defined by

Li j = ∂vi

∂x j
, Lc

i j = ∂vci
∂xcj

(i, j = 1, 2, 3). (6.4)

On account of Eq. (6.3), the velocity gradients L and Lc are connected by the relation

L = ṘRT + RLcRT . (6.5)

Decomposition of the tensor L into its symmetric and anti-symmetric parts defines
the strain-rate (or stretching) tensor D and the spin (or the rotation-rate) tensor W :

D = 1
2

(
L + LT

)
, W = 1

2

(
L − LT

)
. (6.6)

These definitions, together with relation (6.5), furnish the transformation rules for
the strain-rate and spin tensors expressed by

D = RDcRT , W = ṘRT + RW cRT . (6.7)

Since, by definition, the spin tensors are skew-symmetric (W = −W T ) and therefore
have only three non-trivial components (Chadwick 1999), the tensor quation (6.7)2
is equivalent to three scalar equations which express three non-zero components
of W in terms of three non-zero components of W c: Wc

12, W
c
13 and Wc

23. The first
component, Wc

12, is irrelevant to this analysis, since it describes the rotation of the
crystal about its axis of symmetry (which does not affect the creep behaviour of the
crystal); hence, the respective equation for the ( · )12 components can be ignored.
The remaining two spin tensor components,Wc

13 andW
c
23, can be expressed in terms

of the strain-rate tensor components by assuming that the grain basal planes remain
parallel to each other during the creep deformation of the crystal. This provides two
kinematic relations (Meyssonnier and Philip 1996):

Wc
13 = Dc

13 , Wc
23 = Dc

23 . (6.8)
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Accordingly, in view of (6.8), the tensor expression (6.7)2 yields the following two
evolution equations for the angles θ and ϕ:

θ̇ = − Dc
13 + W13 cosϕ + W23 sinϕ, (6.9)

ϕ̇ sin θ = − Dc
23 − W12 sin θ − (W13 sinϕ − W23 cosϕ) cos θ. (6.10)

The above two kinematic equations describe uniquely the rotation of the crystal c-
axis, as long as the microscopic strain-rates Dc

13 and Dc
23, expressed in the lattice

frame Oxci , and the microscopic spins W12, W13 and W23, given in the fixed frame
Oxi , are known. The microscopic strain-rates are related to stresses by constitutive
laws, while the microscopic spins are determined by the macroscopic deformations
of a whole polycrystal. The formulation of the microscopic constitutive equations is
the subject of the next section.

6.2 Constitutive Laws for an Ice Crystal

The results of experiments carried out by Rigsby (1958) and Jones (1982) show that
the creep behaviour of polycrystalline ice can be regarded as independent of confining
pressure. Therefore, one can assume that the creep of ice is entirely determined by
the deviatoric stress (which is a common approximation of the creep behaviour in
general), and treat the material as an incompressible medium, with the mean pressure
not prescribed by a constitutive law, but determined by the momentum equation and
boundary conditions in a particular problem considered. The same assumptions as
for the polycrystalline ice aggregate are applied to the viscous behaviour of a single
crystal of ice. Kamb (1961) proved that the creep response of an individual hexagonal
crystal is entirely independent of the glide direction on the crystal basal plane in the
case of its linear behaviour, and is weakly dependent on the glide direction in the case
of non-linear behaviour. Thus, irrespective whether it is linear or non-linear range
of the creep response of ice to stress, the single crystal of ice is universally treated
as a material exhibiting transverse isotropy, with the crystal c-axis being the axis of
rotational symmetry, and the crystal basal plane being the plane of isotropy.

Accordingly, the constitutive law for a crystal involves the deviatoric Cauchy
stress, S, and the strain-rate, D. In addition, to account for the anisotropy of the
material, a so-called structure tensor, denoted by M, is used to account for the
transverse symmetry of the body. The latter tensor is defined by means of the crystal
c-axis unit vector c as follows:

M = c⊗ c, Mi j = ci c j (i, j = 1, 2, 3), (6.11)

where the symbol⊗ denotes an outer product. The structure tensor has the properties
trM = 1 and M2 = M. The deviatoric stress S is given in terms of the Cauchy stress
σ and the hydrostatic pressure p by
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S = σ − 1
3 tr σ I = σ + p I, p = − 1

3 trσ. (6.12)

The constitutive laws for the anisotropic ice are derived within the framework of
the general theory of frame-indifferent (objective) constitutive equations (Chadwick
1999; Liu 2002; Truesdell and Noll 2004). In accordance with this theory, admissible
constitutive relations must satisfy a set of conditions which ensure that the observed
behaviour of a material is the same for any pair of (moving) observers (for details
see Appendix B). By applying this theory, an irreducible (canonical) form of a non-
linear constitutive equation can be derived for any type of material symmetry, such as
isotropy, transverse isotropy, orthotropy, etc. (Boehler 1987). The irreducible form
of a frame-indifferent constitutive law for a transversely isotropic medium, which
relates two symmetric second-order tensors, A1 and A2 say, and which is linear in
these tensors, is expressed by

A1 = α1 I + α2M + α3A2 + α4 (MA2 + A2M) . (6.13)

The above form is obtained from a general non-linear Eq. (B.7) on p. 325. In (6.13),
α1 and α2 are functions of the invariants tr A2 and tr (MA2), and α3 and α4 are
constants. The invariant tr (MA2) = cT A2 c describes the component of the tensor
A2 in the privileged material direction represented by the vector c, parallel to the
crystal c-axis. In view of Eqs. (B.8), the coefficients αk (k = 1, . . . , 4) are given by

α1 = a1 + a2tr A2 + a3tr (MA2),

α2 = a4 + a5tr A2 + a6tr (MA2),

α3 = a7, α4 = a8.

(6.14)

Thus, there are eight constants (a1, . . . , a8) in the most general form of a linear law.
Since our aim is to construct a constitutive law for the creep behaviour of ice, one
of the above two tensors, A1 or A2, will be the deviatoric stress tensor S, and the
other will be the strain-rate tensor D, with a specific choice depending on whether
the stress will be expressed in terms of the strain-rate, or vice versa.

The number of non-vanishing material constants ai appearing in (6.13) and (6.14)
can be reduced from eight to three by following the procedure described in detail
by Staroszczyk (2004). Here we only note that two constants, namely a1 and a4,
become zero if one assumes that the material is stress-free if it does not deform, that
is, S = O when D = O, where O is the zero tensor. Further, by taking advantage of
the fact that both tensors S and D are traceless (tr S = 0 by definition and tr D = 0
by ice incompressibility), we notice that the two terms involving tr A2 disappear in
(6.14). Hence, the constants a2 and a5 have no effect on the creep response of the
material and therefore can be neglected. Thus,

α1 = a3tr (MA2), α2 = a6tr (MA2), (6.15)
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and the law (6.13) reduces to

A1 = a3tr (MA2)I + a6tr (MA2)M + a7A2 + a8 (MA2 + A2M) . (6.16)

By equating now the deviatoric parts of both sides of (6.16) one can eliminate the
first term on the RHS of (6.16) (since I is a spherical tensor), which implies that the
constant a3 does not enter the constitutive equation. Accordingly, the flow law for a
transversely isotropic and incompressible ice crystal takes the form

A1 = a6tr (MA2)
(
M − 1

3 I
) + a7A2 + a8

[
A2M + MA2 − 2

3 tr (MA2) I
]
.

(6.17)

which involves only three material constant: a6, a7 and a8. These three constants,
defining the creep behaviour of the material, should be (ideally) determined from the
results of simple laboratory tests.

6.2.1 Strain-Rate – Stress Formulation

The frame-indifferent microscopic constitutive law relating strain-rate to deviatoric
stress is obtained by taking A1 = D and A2 = S in Eq. (6.17), which then becomes:

D = a6tr (MS)
(
M − 1

3 I
) + a7S + a8

[
SM + MS − 2

3 tr (MS) I
]
. (6.18)

The above law describes the crystal behaviour in the global reference frame Oxi
(i = 1, 2, 3). In order to physically interpret and then determine in experiments the
three material constants a6, a7 and a8, it is convenient to adopt this frame to coincide
with the local frame Oxci associated with the single crystal lattice. In this case,
D = Dc and S = Sc, and the tensors and their combinations entering Eq. (6.18) are
defined by

M =
⎛
⎝
0 0 0
0 0 0
0 0 1

⎞
⎠ , MSc =

⎛
⎝

0 0 0
0 0 0
Sc31 Sc32 Sc33

⎞
⎠ , tr (MSc) = Sc33 , (6.19)

ScM + MSc − 2
3 tr (MSc) I =

⎛
⎝

− 2
3 S

c
33 0 Sc13

0 − 2
3 S

c
33 Sc23

Sc31 Sc32
4
3 S

c
33

⎞
⎠ . (6.20)

With expressions (6.19) and (6.20), the law (6.18) yields the relations which con-
nect the microscopic strain-rate components Dc

i j to the corresponding microscopic
deviatoric stress components Sci j by

Dc
12 = a7S

c
12, Dc

13 = (a7 + a8) S
c
13, Dc

33 = 1
3 (2a6 + 3a7 + 4a8) S

c
33 . (6.21)
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Now let us introduce the following three fluidities (reciprocal viscosities) ηi j : η13
for shearing in the plane parallel to the crystal c-axis (basal shearing), η12 for shearing
in the plane normal to the c-axis (prismatic shearing), and η33 for unconfined axial
compression along the c-axis. These fluidities are defined in terms of the strain-rates
and deviatoric stresses expressed in the local coordinate system Oxci by

ηi j = 2Dc
i j

Sci j
. (6.22)

The factor 2 is used in the above definition to ensure conformity with the standard
form of the viscous flow law for isotropic fluids S = 2μ0D (then Si j = 2Di j/η0 due
to μ0 = 1/η0), with μ0 and η0 denoting, respectively, the isotropic fluid viscosity and
fluidity. From relations (6.21) and (6.22) it follows that

a7 = 1
2 η12, a7 + a8 = 1

2 η13, 2a6 + 3a7 + 4a8 = 1
2 η33. (6.23)

The solution of the above three equations determines the material constants in terms
of the fluidities as follows:

a6 = (
3
4 α + 1

4 β − 1
)
η , a7 = 1

2 βη , a8 = 1
2 (1 − β) η , (6.24)

where η = η13 is the largest fluidity amongst η12, η13 and η33. α and β are two
dimensionless rheological parameters, defining the axial andprismatic shearfluidities
in terms of the basal shear fluidity η = η13:

α = η33

η13
, β = η12

η13
, (6.25)

with the inequalities 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Substitution of relations (6.24) in
(6.18) leads to the constitutive equation

D = 1
2η

{
1
2 (3α + β − 4) tr (MS)

(
M − 1

3 I
) + β S +

+ (1 − β)
[
SM + MS − 2

3 tr (MS) I
] } (6.26)

for the viscous deformation of the transversely isotropic crystal of ice. In particular,
the case α = β = 1 describes an isotropic crystal, and the case α = β = 0 corre-
sponds to the situation in which the crystal deforms only by basal slip. It can be easily
verified that for the isotropic grain the law (6.26) reduces to the standard equation
D = η0S/2, with η = η0, or, equivalently, to the relation S = 2μ0D. In the Voigt
notation, in which tensor components are expressed as elements of vectors, the flow
law (6.26) can be expressed in the crystal coordinate system in an alternative form
as
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⎛
⎜⎜⎜⎜⎜⎜⎝

Dc
11

Dc
22

Dc
33

Dc
12

Dc
13

Dc
23

⎞
⎟⎟⎟⎟⎟⎟⎠

= η

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 (α + β) 1

2 (α − β)
1
2 (α − β) 1

2 (α + β) (0)
α

β
(0) 1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Sc11
Sc22
Sc33
Sc12
Sc13
Sc23

⎞
⎟⎟⎟⎟⎟⎟⎠
, (6.27)

with the symmetric fluidity matrix depending on the three rheological parameters:
the basal shear fluidity η and the two dimensionless parameters α and β describing
the degree of anisotropy of the crystal. An alternative fluidity matrix was derived
by Gagliardini and Meyssonnier (1999); however, they considered a simpler case
in which α = β (that is, the fluidities for prismatic shear and axial compression are
equal), which results in a diagonal form of the matrix in (6.27).

6.2.2 Stress – Strain-Rate Formulation

In the particular case of the coordinate frame associated with the crystal, the con-
stitutive law in the form expressing deviatoric stress in terms of strain-rate can be
easily derived by inversion of (6.27). However, such an inversion of the general form
(6.26) is not so straightforward. Therefore, to derive a counterpart of the viscous
flow (6.26) in which stresses are now given in terms of strain-rates, we resort to
the same method as that employed to obtain (6.26). Hence, we start again from the
generic equation (6.17), and assume that now A1 = S and A2 = D. Accordingly,
the stress—strain-rate form of the viscous flow law is expressed by

S = a6tr (MD)
(
M − 1

3 I
) + a7D + a8

[
MD + DM − 2

3 tr (MD) I
]
, (6.28)

where the material constants a6, a7 and a8 have now different meanings than in
the strain-rate – stress equation given by (6.18). In order to relate these constant to
measurable quantities, we introduce three viscosities: μ13, μ12 and μ33, which are,
respectively, the shear viscosities for basal and prismatic slips, and the axial viscosity
for compression along the c-axis. These viscosities are the reciprocals of the fluidities
defined by (6.22), thus

μi j = η−1
i j . (6.29)

Furthermore, we also introduce two dimensionless rheological parameters A and B,
defining the degree of anisotropy of the single crystal, defined by

A = μ33

μ13
, B = μ12

μ13
, (6.30)



www.manaraa.com

178 6 Micro-mechanical Models for Polar Ice

which, in view of (6.29) and (6.25), are related to the previously used parameters α
and β by

A = α−1, B = β−1. (6.31)

By following the same argument as before for the strain-rate – stress formulation of
the constitutive equation, the three constants a6, a7 and a8 can be related to the three
viscosities μ12, μ13 and μ33, or, equivalently, to the two dimensionless parameters
A and B and the basal shear viscosity μ = μ13 (the smallest viscosity amongst μ12,
μ13 and μ33) (Staroszczyk 2002). After inserting the resulting expressions for a6,
a7 and a8 into (6.28), one obtains the following frame-indifferent constitutive law
describing the viscous creep behaviour of an incompressible transversely isotropic
crystal of ice:

S = 2μ
{
1
2 (3A + B − 4) tr (MD)

(
M − 1

3 I
) + BD +

+ (1 − B)
[
MD + DM − 2

3 tr (MD) I
]}
,

(6.32)

where A ≥ 1 and B ≥ 1. The case A = B = 1 corresponds to an isotropic crystal,
whereas the limit case A → ∞ and B → ∞ describes a crystal which deforms only
by basal glide. In the local coordinate system associated with the crystal lattice, the
law (6.32) can be expressed as

⎛
⎜⎜⎜⎜⎜⎜⎝

Sc11
Sc22
Sc33
Sc12
Sc13
Sc23

⎞
⎟⎟⎟⎟⎟⎟⎠

= 2μ

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 (A + B) 1

2 (A − B)
1
2 (A − B) 1

2 (A + B) (0)
A

B
(0) 1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Dc
11

Dc
22

Dc
33

Dc
12

Dc
13

Dc
23

⎞
⎟⎟⎟⎟⎟⎟⎠
. (6.33)

It can be easily shown, recalling the identities (6.31) and μ = 1/η, that the viscosity
matrix in Eq. (6.33) is indeed an inverse of the fluidity matrix in Eq. (6.27).

6.3 Macroscopic Behaviour of an Ice Polycrystal

The microscopic constitutive laws formulated in Sect. 6.2 describe the viscous creep
of a single crystal of ice. In order to derive macroscopic constitutive equations for
a polycrystalline aggregate, composed, in general, of crystals of all possible ori-
entations in space, it is necessary to apply one of homogenization methods. These
methods, based on various simplifications adopted in them, enable the estimation of
the macroscopic properties of a polycrystal.

A number of approaches, which all originate from the field of metallurgy, have
been developed to connect the properties of single crystals to those of polycrystals.
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The historically first such an approach, known as the uniform stress method, also
referred to as the Sachs-Reuss (SR) method, is based on the assumption that all crys-
tals in an aggregate are subject to the same stresses. This approximation was first
introduced to ice mechanics by Lliboutry (1993) who argued that the differences
in micro-stresses between adjacent ice grains are negligibly small due to the pro-
cess of continuous migration of grain boundaries. The other approach, commonly
applied in metallurgy and structural geology, is known as the uniform strain method,
or the Taylor-Voigt (TV) method, and implies that uniform macroscopic deforma-
tion applied to an aggregate induces the same uniform deformations in all con-
stituent grains. Both homogenization methods significantly simplify the real intrin-
sic behaviour of the material, since they do not account for the local interactions
occurring between individual crystals. Furthermore, in the uniform stress approach,
the local (that is, across the grain boundaries) compatibility conditions are, gener-
ally, not satisfied, whereas in the uniform strain approximation the local equilibrium
conditions are, usually, violated. The question as to which of the two methods is
more suitable for polycrystalline ice remains open, since, as yet, there is no obvious
indication as to why one of the approaches should be better than the other. It appears
that the uniform stress method is more common in theoretical glaciology, though
the results of numerical comparisons made by Meyssonnier and Philip (1999) (by
using a self-consistent model similar to that of Castelnau et al. (1996), in which no
assumptions on local stresses and strains are made) do not clearly favour either of
the models. Nevertheless, both Sachs-Reuss and Taylor-Voigt models are useful for
practice, since these two extreme approximations of the stress and the strain homo-
geneity in a polycrystalline aggregate give, respectively, a lower and an upper bound
for the macroscopic stress at a given strain-rate (Bishop and Hill 1951; Hill 1952;
Arminjon 1991); hence, they provide bounds on the macroscopic viscosity of polar
ice. Thus, it is of interest to develop the models for polycrystalline ice which make
use of both limit approximations. Apart from the Sachs-Reuss, Taylor-Voigt and
self-consistent model (Molinari et al. 1987), several other, formally more complex
approaches, are known in materials science, including, for instance, the Hashin-
Shtrikman (1963) and Mori-Tanaka (1973) methods, which enable more accurate
estimations of the real behaviour of polycrystalline bodies. Such models, though,
have not been used yet in theoretical glaciology. At this stage it seems that a good
practical solution in geophysical applications is to take an arithmetic mean of the
lower and upper bounds predicted by the Sachs-Reuss and Tailor-Voigt methods, as
giving a sufficiently accurate approximation to the macroscopic ice viscosity.

Once themicroscopic properties of all individual grains in a polycrystal have been
established by applying microscopic constitutive equations, kinematic constraints
and simplifications imposed by a homogenization technique employed, the macro-
scopic response of the polycrystalline aggregate can be determined. In the multi-
grain formulation presented here, a simple averaging method is adopted, in which
the components of any tensor quantity describing thewhole polycrystal are defined as
weighted arithmetic averages of the components of the corresponding microscopic
tensor entities. In what follows, all macroscopic quantities will be indicated by a
superposed bar. Accordingly, the components of a macroscopic tensor T̄ are eval-
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uated in terms of the components of microscopic tensors T (k) (k = 1, 2, . . . , Nc)
associated with constituent crystals by the formula

T̄i j = 1

V0

Nc∑
k=1

Vk T
(k)
i j , V0 =

Nc∑
k=1

Vk . (6.34)

In (6.34), Vk denotes the volume of a k-th discrete grain, V0 is the total volume of
all grains in the aggregate, and Nc is the number of crystals at a given material point
and at a given time instant. If only the mechanism of rotation recrystallization is
considered, then the number of crystals can be treated as constant. However, when
the mechanism of the dynamic (migration) recrystallization is active, then Nc varies
in time due to the process of nucleation of new crystals and the disappearance of old
ones.Moreover, the volumes Vk of the crystals which undergo dynamic recrystalliza-
tion change either. To obtain statistically satisfactory results of the above averaging
procedure, the number of discrete grains used in the calculations should exceed a
minimum value of 230, found by Elvin (1996) on the basis of numerical simulations
carried out for polycrystalline S2 ice. In all simulations, the results of which are
presented in the further part of this chapter, at least 800 discrete grains have been
used.

Themajority of themicro-mechanicalmodels that havebeendeveloped to describe
induced anisotropy of ice are based on the Sachs-Reuss approximation of the stress
homogeneity within a polycrystalline aggregate (Lile 1978; Lliboutry 1993; Van der
Veen and Whillans 1994; Gödert and Hutter 1998; Gagliardini and Meyssonnier
1999; Staroszczyk 2001), implying that each crystal, irrespective of its orientation,
bears the same microscopic stress, equal to the overall macroscopic stress applied to
the aggregate. Formally, this is expressed by

S = S̄. (6.35)

The tensor equation (6.35) is equivalent to six relations between the microscopic and
macroscopic deviatoric stresses. The six microscopic stress components determine,
through the constitutive law (6.26), six microscopic strain-rate components. How-
ever, these six strain-rates Di j are insufficient to trace the evolution of the oriented
structure of the material, described by (6.9) and (6.10), since microscopic spinsW12,
W13 andW23 are needed as well. Therefore, three additional micro-macroscopic rela-
tions are required, and those, following Gödert and Hutter (1998) and Gagliardini
and Meyssonnier (1999), are chosen to be

W = W̄ , (6.36)

connecting the microscopic and macroscopic spins. Hence, the uniform stress model
considered here is, in fact, based on the combination of six stress and three kinematic
conditions.
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In other branches of materials science, especially in metallurgy, more common
than the uniform stress models are the methods based on the Taylor-Voigt approx-
imation of the strain uniformity in the polycrystalline aggregate. An example is a
family of theories referred to as the Taylor-Bishop-Hill (TBH) models (Bishop and
Hill 1951; Wenk et al. 1989; Zhang and Jenkins 1993). In terms of the velocity
gradients, the Taylor-Voigt condition takes the form:

L = L̄, (6.37)

which is equivalent to
D = D̄ and W = W̄ . (6.38)

Thus, the uniform strain model is based on nine kinematic relations, connecting the
single crystal and polycrystalline aggregate deformation variables.

6.3.1 Uniform Stress Model

The stress uniformity condition (6.35) implies that, in general, the local strain-rates D
are different in each crystal. These strain-rates, expressed in the global coordinates
Oxi , are prescribed by the constitutive equation (6.26) in which the microscopic
stress S is replaced by the macroscopic stress S̄. In order to follow the evolution of
the crystal c-axes orientations in space, described by Eqs. (6.9) and (6.10), one needs
the strain-rate components Dc

13 and Dc
23 given in the local frame Oxci . The latter

components can be derived from the transformation relation (6.7)1 to yield

Dc
13 = η

4
sin 2θ

[
S̄11(1 + cos2 ϕ) + S̄22(1 + sin2 ϕ) + S̄12 sin 2ϕ

] +
+ η

2
cos 2θ (S̄13 cosϕ + S̄23 sinϕ), (6.39)

Dc
23 = η

4
sin θ

[
(S̄22 − S̄11) sin 2ϕ + 2S̄12 cos 2ϕ

] +
− η

2
cos θ (S̄13 sinϕ − S̄23 cosϕ). (6.40)

The insertion of the above two relations in Eqs. (6.9) and (6.10), in which the micro-
scopic spin tensor components Wi j are replaced by the corresponding macroscopic
quantities W̄i j , see the condition (6.36), allows us to follow the evolution of the
angles θ and ϕ defining the orientation of the c-axis of an individual crystal. By
doing so for all the crystals in the aggregate one can trace the evolution of the ice
fabric (the oriented microstructure of ice). By applying then the averaging formula
(6.34), it is possible to evaluate the macroscopic properties of ice associated with its
current fabric.
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Limit Viscosities

The macroscopic property which is crucial in the context of polar ice sheet flow sim-
ulations, is the viscosity of ice. Therefore, it is of practical importance to determine
the dependence of themacroscopic viscosities of anisotropic ice on itsmicrostructure
(fabric), starting from an initially isotropic fabric typical of ice found near the free
surface of an ice sheet, to strongly anisotropic fabrics characteristic of the bottom
layers of polar glaciers.

First, determine the macroscopic viscosity of the isotropic polycrystalline ice.
Clearly, this must be a function of the microscopic rheological parameters defining
the viscous properties of a single crystal, and the distribution of the crystal orien-
tations in the fabric. In the case of macroscopic isotropy of the material, it can be
assumed that the c-axes of all the crystals in the aggregate are randomly distributed
in space. Suppose that the number of constituent grains is sufficiently large, and that
each crystal (with its orientation defined by the angles θ andϕ) has the same size and,
thus, ‘occupies’ the same area on a unit hemisphere, equal to Nc = 2π/ sin θ dθ dϕ.
Then, at the limit Nc → ∞, the summation in Eq. (6.34) can be replaced by sur-
face integration, which, when applied to the strain-rate components, transforms the
averaging formula (6.34)1 into:

D̄i j = 1

2π

2π∫

0

π/2∫

0

Di j (θ,ϕ) sin θ dθ dϕ. (6.41)

To derive a relation between the macroscopic and microscopic fluidities (reciprocal
viscosities) of the isotropic ice, consider a simple stress configuration, namely that
of pure shear, in which the only non-vanishing deviatoric stress components are, say,
S̄13 = S̄31. For these two components, the flow law (6.26), with S13 = S̄13, yields the
microscopic strain-rate D13

D13 = η

2
S̄13

[
(3α + β − 4) sin2 θ cos2 θ cos2 ϕ +

+ β + (1 − β)(sin2 θ cos2 ϕ + cos2 θ)
]
.

(6.42)

After substituting the above equation into (6.41) and performing the prescribed inte-
gration, one finds the macroscopic strain-rate D̄13 to be given by

D̄13 = η

10
S̄13 (α + 2β + 2). (6.43)

By the analogywith the viscous flow law S̄ = 2μ0 D̄, the latter expression determines
the macroscopic viscosity of the isotropic ice, μ0, as

μ0 = μ
5

α + 2β + 2
. (6.44)
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Recall that μ = μ13 is the microscopic shear viscosity for the crystal basal slip, and
the dimensionless rheological parameters α and β describe the strength of crystal
anisotropy. For the isotropic crystals (α = β = 1), relation (6.44) gives μ0 = μ,
implying that the microscopic and macroscopic viscous properties of the material
are the same.

As the polycrystalline ice deforms under uniaxial compression or simple shear,
the individual crystals gradually rotate in such a way that, eventually, all the crys-
tal c-axes become aligned in parallel, forming a very strong fabric. Such highly
anisotropic fabrics develop at very large axial or shear strains, and are typical of
near-bottom regions of polar ice sheets (Gow et al. 1997; Thorsteinsson et al. 1997;
Gow and Meese 2007; Faria et al. 2014). In a limit situation, when all the crystal
c-axes are aligned in one direction, the macroscopic properties of the polycrystal are
essentially those of a single monocrystal, with the rheological properties described
by the constitutive Eqs. (6.26) or (6.27). Hence, the macroscopic viscosities of the
polycrystal are the same as the microscopic viscosities of a single crystal. Therefore,
with the macroscopic viscosity of the isotropic polycrystalline ice given by (6.44),
the ratio of the limit macroscopic viscosity for shearing on the plane parallel to the
direction of all crystal c-axes is expressed by the relation

μ13

μ0
= α + 2β + 2

5
. (6.45)

Similarly, the limit macroscopic viscosities for shear in the plane normal to the
crystal c-axes (prismatic shearing), for uniaxial compression along the c-axes, and for
uniaxial compression in the direction normal to the c-axes, are given, respectively, by

μ12

μ0
= α + 2β + 2

5β
,

μ33

μ0
= α + 2β + 2

5α
,

μ11

μ0
= 4(α + 2β + 2)

5(α + 3β)
. (6.46)

The limit viscosity ratiosμ13/μ0 andμ33/μ0, defined by the above expressions (6.45)
and (6.46)2, are usually measured in simple shear and uniaxial compression tests
carried out on samples of polycrystalline ice. It follows from relation (6.45) that in
the case of the most anisotropic single crystals, defined by the material parameters
α = β = 0, when the only mode of the crystal deformation is the basal glide, the
limit viscosity ratio μ13/μ0 = 0.4 holds. On the other hand, equation (6.46)2 gives
for α = β = 0 an unbounded value of the limit viscosity ratio μ33/μ0. This means
that when all the crystal c-axes are aligned in one direction, then the polycrystal
cannot deform in this direction by axial compression. Since for physical reasons this
is unrealistic, a non-zero value of the rheological parameter α must be adopted in
the uniform stress constitutive model.

The reciprocals of the limit viscosity ratios given by Eqs. (6.45) and (6.46)2,
μ0/μ13 and μ0/μ33, are commonly described in glaciology as the enhancement fac-
tors for shear and compression, Es and Ea , respectively (Budd and Jacka 1989). By
correlating the viscosity relations (6.45) and (6.46)2 with empirical data, one can
attempt to determine the single crystal rheological parameters in micro-mechanical
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constitutive models. Budd and Jacka (1989) measured the values of the enhancement
factors Ea = 3 and Es = 8 for ice at temperatures near the melting point, meaning
that both axial and shear viscosities of strongly anisotropic ice are considerably
smaller than those for isotropic ice at the start of deformation. However, the data for
ice at temperatures below −20 ◦C (Pimienta et al. 1987; Thorsteinsson et al. 1997)
indicate that the axial viscosity increases with the development of the anisotropic
fabric in ice; that is, Ea < 1. Hence, two different types of polar ice can be dis-
tinguished, referred to as warm ice and cold ice. There is no universal agreement
between researchers as to the specific values of the enhancement factors for both
types of polar ice, and different values are reported on the basis of experimental data
(Pimienta et al. 1987; Ma et al. 2010; Treverrow et al. 2012), or estimated on the
basis of numerical simulations (Mangeney et al. 1996; Thorsteinsson et al. 1999).
Certainly, the differences among the estimates for Ea and Es must be attributed to the
fact that different stress, strain and temperature regimes were explored. Generally,
the values of the shear enhancement factor Es can range from about 4 to about 10,
for both warm and cold ice. As regards the enhancement factor for compression, the
values of Ea varying from 2.8 to even 6.3 are reported (Treverrow et al. 2012) for
warm ice, and Ea ranging from about 1/10 to about 1/3 for cold ice appear in the
literature. Throughout this book, the following pairs of the compression and shear
enhancement factors will be used in numerical simulations: Ea = 3 and Es = 8 for
warm ice, and Ea = 1/3 and Es = 5 for cold ice.

Simple Flow Simulations

The proposed micro-mechanical model has been used to simulate the viscous creep
behaviour of polycrystalline ice in simple flow configurations, with the purpose to
examine, and illustrate, the mechanism of the development of anisotropic fabrics
with increasing macroscopic deformation of ice, and to investigate the associated
process of the evolution of the macroscopic viscosities of ice with the increasing
degree of its anisotropy.

Two configurations which were considered in the simulations included uniaxial
compression and simple shear flow regimes (see Fig. 6.4). The first regime is typical
of the central, near-divide, regions of polar ice caps, whereas the other flow regime is
dominant in near-bottom layers of large polar ice sheets, especially in regions which
are far from ice divides (refer to Fig. 2.3 on p. 15).

Let adopt the material rectangular coordinates OXi (i = 1, 2, 3) and the spatial
coordinates Oxi (i = 1, 2, 3), with the same origin O and the directions of the coor-
dinate axes. Then, the deformation field describing unconfined uniaxial compression
along the X3-axis is defined by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, λ1 = λ2 = λ
−1/2
3 , (6.47)

where λi (i = 1, 2, 3) are the principal stretches along the Xi axes, all equal to unity
at the start of flow at time t = 0 from an initially isotropic state, and λ3 < 1 in
compression and λ3 > 1 in extension at t > 0. The last relation in (6.47) results
from the ice incompressibility condition λ1λ2λ3 = 1. The velocity field, obtained by
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time-differentiation of relations (6.47), is described by

v1 = − 1
2 x1λ̇3/λ3, v2 = − 1

2 x2λ̇3/λ3, v3 = x3λ̇3/λ3. (6.48)

The macroscopic deviatoric stress and velocity gradient tensors have diagonal forms
given by

S̄ =
⎛
⎝

− 1
2 S̄33 0 0
0 − 1

2 S̄33 0
0 0 S̄33

⎞
⎠ , L̄ =

⎛
⎝

− 1
2 λ̇3/λ3 0 0
0 − 1

2 λ̇3/λ3 0
0 0 λ̇3/λ3

⎞
⎠ , (6.49)

where S̄33 = 2
3 σ̄33, with σ̄33 being the macroscopic axial stress (negative in compres-

sion) applied to ice. The diagonal form of L̄ implies that D̄ = L̄ and the spin is zero,
W̄ = O. The axial deformation along the X3-axis is given by the stretch λ3, but, in
subsequent plots, a more common measure, expressed by the axial strain ε33, will be
used

ε33 = λ3 − 1, (6.50)

with negative values for compression, and positive for tension.
In the simple shear configuration, see Fig. 6.4b, it is assumed that the deformation

takes place in the plane OX1X3 and the viscous flow starts from an initially isotropic
state. The deformation field is then described by

x1 = X1 + κX3, x2 = X2, x3 = X3, (6.51)

whereκ is a shear strain increasing fromzero. The associated velocity field is given by

v1 = κ̇x3, v2 = v3 = 0, (6.52)

(a) (b)

Fig. 6.4 Simple flow configurations: a uniaxial compression along the X3-axis and b simple shear
in the plane OX1X3



www.manaraa.com

186 6 Micro-mechanical Models for Polar Ice

giving the macroscopic velocity gradient, strain-rate, and spin tensors

L̄ =
⎛
⎝
0 0 κ̇
0 0 0
0 0 0

⎞
⎠ , D̄ =

⎛
⎝

0 0 1
2 κ̇

0 0 0
1
2 κ̇ 0 0

⎞
⎠ , W̄ =

⎛
⎝

0 0 1
2 κ̇

0 0 0
− 1

2 κ̇ 0 0

⎞
⎠ . (6.53)

The numerical simulations were carried by using Nc = 800 discrete grains in
the uniform stress model. The initial crystal c-axes orientations were distributed
at random. The calculations were performed for the isotropic ice viscosity μ0 =
10 MPa· a (where the unit ‘a’ denotes year), and the axial deviatoric stress |S̄33| =
0.1 MPa, kept constant during the flow. The latter two values can be regarded as
typical magnitudes of both quantities in large polar ice sheets (Staroszczyk and
Morland 2000).

Figures6.5 and 6.6 illustrate the development of anisotropic ice fabrics with
increasing axial deformation ε33 under compression and tension. The fabrics are pre-
sented bymeans of equal-area Schmid diagrams, in which the dots show the positions
of crystal c-axes on the unit hemisphere projected on the plane Ox1x2 (normal to the
direction of axial loading). The plots illustrate the predictions of the uniform stress
(Sachs-Reuss) model, in which themicroscopic rheological properties describing the

1

2

33= 0.0, =0 33=-0.1 , =20 a 33=-0.2 , =43 a

33=-0.4 , =115 a 33=-0.5 , =235 a33=-0.3 , =72 a

Fig. 6.5 Evolution of anisotropic ice fabric in uniaxial compression along the x3-axis as a function
of the macroscopic axial strain ε33 and time t (given in years), for the crystal rheological parameters
α = β = 0.1 in the uniform stress (Sachs-Reuss) model



www.manaraa.com

6.3 Macroscopic Behaviour of an Ice Polycrystal 187

1

2

33= 0.0, =0 33= 0.1, =20 a 33=0.2, =40 a

33=0.4, =89 a 33= 0.5, =123 a33=0.3, = 63 a

Fig. 6.6 Evolution of anisotropic ice fabric in uniaxial tension along the x3-axis as a function of
the macroscopic axial strain ε33 and time t (given in years) for the crystal rheological parameters
α = β = 0.1 in the uniform stress (Sachs-Reuss) model

anisotropy of a single crystal are defined by the parameters α = β = 0.1. Figure 6.5
demonstrates the mechanism of crystal lattice rotation under compression. The dia-
grams show how the crystals gradually align in the direction of the principal axis of
compression x3, which at large strains gives rise to a single maximum fabric, with
nearly all the crystal c-axes clustered around the x3-axis. The plots in Fig. 6.6, in
turn, illustrate the behaviour of polycrystalline ice under uniaxial tension. In this
stress configuration, the progressive movement of the crystal c-axes away from the
principal axis of tension x3 can be observed, so that at large axial strains ε33 all the
crystals tend to align near the plane Ox1x2, normal to the direction of tension. Such
behaviour of ice, predicted by the model and shown in the presented plots, is in good
qualitative agreement with the behaviour of polar ice observed in the field (Budd and
Jacka 1989; Alley 1992; Thorsteinsson et al. 1997).

The results displayed in Figs. 6.7 and 6.8 illustrate the variation of macroscopic
axial viscosities with increasing strains; that is, with increasing anisotropy of the
polycrystalline ice aggregate. The axial viscosity μ33 is defined in terms of the
macroscopic stress S̄33 (kept constant) and the current macroscopic strain-rate D̄33

by the relation μ33 = S̄33/(2D̄33), and is normalized by the isotropic ice viscosity μ0;
hence, the ratios μ33/μ0 are plotted in the figures. It is clearly seen that the viscous
behaviour of ice, both in compression and tension, is very sensitive to the values of
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Fig. 6.7 Variation of the
normalized macroscopic
axial viscosity μ33/μ0 with
the strain ε33 in uniaxial
compression, for different
values of the rheological
parameters α and β in the
uniform stress (Sachs-Reuss)
model
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Fig. 6.8 Variation of the
normalized macroscopic
axial viscosity μ33/μ0 with
the strain ε33 in uniaxial
tension, for different values
of the rheological parameters
α and β in the uniform stress
(Sachs-Reuss) model
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the microscopic rheological parameters α and β. As already mentioned, the limit
axial viscosities attain infinite values in the case of crystals deforming only by basal
glide (α = β = 0). It can also be observed that, in general, the limit axial viscosities
are different for the ice subjected to compression and tension, with the exception
of cases in which α = β (this property follows from the second and third relations
(6.46)).

A characteristic feature which can be seen in Fig. 6.7 is that polycrystalline ice
softens during the first phase of its compression, with a slight decrease in the normal-
ized viscosity μ33/μ0 from a unit value for isotropic ice at the start of deformation, to
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the valueswhich are equal to about 0.95 for the combinations ofα ≤ 0.2 andβ ≤ 0.2.
This type of behaviour was observed in experiments (Mellor and Cole 1982; Budd
and Jacka 1989), and can be explained by the fact that the majority of crystals in an
initially isotropic polycrystal have their c-axes oriented at the zenith angles θ greater
than 45◦. Thus, as ice undergoes compression, then immediately after the start of
deformation the c-axes of many crystals pass through the ‘soft orientation zone’; that
is, the surface of the cone defined by the zenith angle θ = 45◦. Since at the latter
angle the resolved shear stress acting on the crystal basal plane has the largest mag-
nitude, and, in turn, the gliding on the basal plane is the easiest way for a crystal to
deform, the overall result is that themacroscopic viscous resistance of the polycrystal
to stress decreases in the first stage of flow. Such a softening mechanism does not
occur under tension, since then the majority of crystals, during their rotation away
from the principal direction of tensile stress, do not pass through the cone θ = 45◦.
Hence, the monotonic increase of the macroscopic viscosities with increasing strain
seen in Fig. 6.8.

More results, and their more detailed discussion, can be found in the paper by
Staroszczyk (2001).

6.3.2 Uniform Strain Model

In the uniform strain model, based on the approximation (6.37), the local devia-
toric stress S is, generally, different in each crystal in the aggregate. This stress is
defined by the constitutive law (6.32), with the microscopic strain-rate D replaced by
the macroscopic strain-rate D̄ due to the condition (6.38)1. The components of the
macroscopic stress S̄ are then evaluated by applying the averaging formula (6.34),
which results in the relation between the macroscopic strain-rate and macroscopic
stress. In order to follow the evolution of the crystal c-axes orientations, described
by Eqs. (6.9) and (6.10) on p. 173, the strain-rate components expressed in the global
coordinates Oxi are transformed to those in the local lattice frame Oxci by using
(6.7)1 on p. 172. This yields:

Dc
13 = 1

2 sin 2θ
[
D̄11(1 + cos2 ϕ) + D̄22(1 + sin2 ϕ) + D̄12 sin 2ϕ

] +
+ cos 2θ (D̄13 cosϕ + D̄23 sinϕ), (6.54)

Dc
23 = 1

2 sin θ
[
(D̄22 − D̄11) sin 2ϕ + 2D̄12 cos 2ϕ

] +
− cos θ (D̄13 sinϕ − D̄23 cosϕ). (6.55)

The above relations, together with the local spin tensor components Wi j replaced
by W̄i j , after the substitution in the kinematic Eqs. (6.9) and (6.10), determine the
current orientations of crystals in the global coordinate frame. Hence, Eqs. (6.54)
and (6.55) describe the evolution of the ice fabric in the uniform strain model.
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Limit Viscosities

To determine the macroscopic viscosity of isotropic ice in terms of the microscopic
rheological parameters, a method (Staroszczyk 2002, 2004) which is very similar to
that applied earlier in Sect. 6.3.1 is followed. Hence, a simple shear flow configu-
ration (see Fig. 6.4b) is adopted, in which, for prescribed macroscopic strain-rates,
the microscopic deviatoric stresses for a single crystal are calculated from the con-
stitutive law (6.32) on p. 178. These stresses are then used to derive the macroscopic
stresses by applying the averaging formula (6.41) (with the strain-rates replaced
by the stresses) for a random fabric. As a result, the following expression for the
macroscopic isotropic ice viscosity μ0 is obtained:

μ0 = μ

5
(A + 2B + 2). (6.56)

The assumption of the isotropy of the single crystal, expressed by A = B = 1, leads,
obviously, to μ0 = μ. On the other hand, when the crystals are supposed to deforms
only by basal glide, which is described by A → ∞ and B → ∞, then (6.56) yields an
unbounded isotropic viscosity of the polycrystal. Recall that the uniform stressmodel
predicts for this case a bounded value of the macroscopic viscosity, μ0 = 2.5µ, see
Eq. (6.44) on p. 182.

In the limit situation of all crystal c-axes aligned in parallel, forming thus a single
maximum fabric, the constitutive relation (6.32), combinedwith the definition (6.56),
yields the limit macroscopic shear viscosity μ13 defined by

μ13

μ0
= 5

A + 2B + 2
. (6.57)

Further, the limit macroscopic viscosities for shear in the plane normal to the crystal
c-axes, for uniaxial compression along the c-axes, and for uniaxial compression in
the direction perpendicular to the c-axes, are given by

μ12

μ0
= 5B

A + 2B + 2
,

μ33

μ0
= 5A

A + 2B + 2
,

μ11

μ0
= 5(A + 3B)

4(A + 2B + 2)
. (6.58)

The reciprocal viscosity ratios (6.57) and (6.58)2 are equal to the enhancement factors
for shear and compression, Es and Ea , respectively. This enables the correlation of the
microscopic rheological constants A and B with the observedmacroscopic behaviour
of polycrystalline ice at indefinitely large deformations. Accordingly, we have

A = Es

Ea
, B = 5

2
Es − 1

2

Es

Ea
− 1. (6.59)

For the specific values of the enhancement factors corresponding to cold and warm
ice adopted in this book for numerical simulations, expressions (6.59) give
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cold ice (Ea = 1
3 , Es = 5) : A = 15, B = 4, (6.60)

warm ice (Ea = 3, Es = 8) : A = 8
3 , B = 53

3 . (6.61)

It should be pointed out that the above values of the enhancement factors cannot be
attained in the uniform stress model considered earlier, for neither cold nor warm
ice. In this respect, the uniform strain model proves to be more flexible, since it
enables the correlation with the observed behaviour of polycrystalline ice, whereas
the uniform stress model does not.

Finally, let us determine the relationship between the isotropic ice viscosities
predicted by the uniform strain and the uniform stress models for the same properties
of constituent crystals in the aggregate. Denoting by μSR

0 and μT V
0 the isotropic ice

viscosities given by the Sachs-Reuss and Taylor-Voigt approximations, respectively,
it can be found from definitions (6.44) and (6.56) that

μT V
0

μSR
0

= 1

25
(A + 2B + 2)(α + 2β + 2), (6.62)

with the connections A = α−1 and B = β−1 introduced by (6.31). For the isotropic
constituent crystals, when A = B = α = β = 1, the μT V

0 /μSR
0 ratio is, obviously,

unity. With increasing anisotropy of the crystals in the aggregate, the viscosity ratio
(6.62) also increases, indicating a growing difference between the upper and lower
bounds on the polycrystalline ice viscosity predicted by the two approximations. For
the particular values of the constants A and B for cold and warm ice, given by (6.60)
and (6.61) respectively, relation (6.62) yields:

A = 15, B = 4 : μT V
0 /μSR

0 = 2.5667, (6.63)

A = 8
3 , B = 53

3 : μT V
0 /μSR

0 = 3.8906. (6.64)

Simple Flow Simulations

The uniform strain model has been applied to simulate the viscous response of poly-
crystalline ice in the same uniaxial and simple shear configurations (see Fig. 6.4
on p. 185) as those considered in Sect. 6.3.1 for the uniform stress model calcu-
lations. The discrete-grain model consisted again of Nc = 800 crystals with equal
volumes. The isotropic ice viscosity μ0 = 10 MPa· a was used in the simulations,
and the microscopic rheological parameters A = 15 and B = 4 were chosen as those
describing the cold ice characterized by the viscosity enhancement factors Ea = 1/3
and Es = 5, see relations (6.59).

The simulations for the simple shear flow regime, described by Eqs. (6.51)–(6.53),
were conducted under the assumption that ice is sheared at a constant strain-rate
D̄13 = 5 × 10−3 a−1. The process of formation and subsequent evolution of ice fabric
during simple shear is illustrated in Fig. 6.9. The distributions of the crystal c-axes
are plotted on the plane Ox1x2, parallel to the glide plane, and normal to the shear
plane Ox1x3 in which the deformation takes place. It can be observed that in this flow
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1
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= 0.0, =0 =1.0 , =100 a =2.0, =200 a

= 10.0, =1000 a = 20.0, = 2000 a= 4.0, =400 a

Fig. 6.9 Evolution of anisotropic ice fabric in simple shear in the Ox1x3 plane as a function of
the macroscopic shear strain κ and time t (in years), for the crystal rheological parameters A = 15
and B = 4 (cold ice) in the uniform strain (Taylor-Voigt) model. Reprinted from Staroszczyk
(2002), Fig. 5. Copyright 2002 by the Institute of Fundamental Technological Research of the
Polish Academy of Sciences

configuration themajority of crystals first rotate towards the plane Ox2x3, and only at
large shear strains κ do their c-axes start to cluster around the axis x3 (which becomes
the principal axis of compression for κ → ∞). Eventually, a single maximum fabric
forms which is very similar to that developing under uniaxial compression (see
Fig. 6.5 on p. 186). The characteristic features of the fabrics illustrated in Figs. 6.5 and
6.9 are consistent with the results obtained byMorland and Staroszczyk (2009), who
deduced the general properties of themechanismof fabric evolution in polycrystalline
bodies without assuming any particular constitutive relation describing the material.

The quantitative features of the process of anisotropic fabric evolution are pre-
sented in Fig. 6.10, showing the variation of the macroscopic axial and shear vis-
cosities with the increasing shear deformation κ. The viscosities are plotted in the
dimensionless forms μi j/μ0, and the initial isotropic state corresponds to κ = 0. It
can be observed that, in the case of the cold ice represented in the figure, the limit
values (at shear strain κ → ∞) of all the axial viscosities are larger than those for
isotropic ice, whereas all the limit shear viscosities are smaller than those for the
isotropic ice. It can be also seen that the shear viscosity μ13 initially increases with κ
at relatively small shear deformations (with a maximum value occurring at κ ∼ 2),
which indicates the initial hardening of the material in this flow regime, before the
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Fig. 6.10 Variation of the
normalized axial and shear
viscosities μi j/μ0 with the
strain κ in simple shear for
the crystal rheological
parameters A = 15 and
B = 4 (cold ice) in the
uniform strain (Taylor-Voigt)
model. Reprinted from
Staroszczyk (2002), Fig. 7.
Copyright 2002 by the
Institute of Fundamental
Technological Research of
the Polish Academy of
Sciences
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phase of progressive softening of the ice fabric at larger shear strains. Since the
fabric that forms at the limit κ → ∞ coincides with that created at large defor-
mations during uniaxial compression, the full anisotropy gradually transforms into
transverse isotropy,withμ13 → μ23 andμ11 → μ22.Moreover, the viscosities plotted
in Fig. 6.10 approach, asκ → ∞, the limit values defined by the enhancement factors
Ea = 1/3 and Es = 5 (that is, μ33/μ0 → 1/Ea = 3 and μ13/μ0 → 1/Es = 1/5).

The uniform strain model has been also used to simulate the creep behaviour of
polycrystalline ice in the uniaxial flow configuration. The ice fabrics predicted by
the model are qualitatively very similar to those presented in Figs. 6.5 and 6.6 and
obtained by applying the uniform stress model. For this reason, these fabrics are not
shown here; relevant illustrations can be found in the paper by Staroszczyk (2002).
The only difference between the predictions of the two alternative models described
in this section is that the uniform strain model predicts ‘stiffer’ behaviour of poly-
crystalline ice than its uniform stress counterpart: the same degree of crystal c-axes
concentration around the principal axis of compression requires a larger compressive
strain along that axis.

It is of interest to compare the predictions of the twoproposedmodels regarding the
evolution of the strength of anisotropy of a polycrystalline aggregate with increasing
macroscopic deformation. Such comparisons are presented in Fig. 6.11, showing the
variation of the axial and shear viscositieswith the axial strain ε33 under compression.
Again, the viscositiesμi j are normalized by the isotropic ice viscosityμ0.Wenote that
(1) the isotropic ice viscosities (occurring at ε33 = 0) predicted by the uniform strain
(Taylor-Voigt) and uniform stress (Sachs-Reuss) models are, for the chosen single
crystal parameters A = 1/α and B = 1/β, in the ratio μT V

0 /μSR
0 = 2.5667 defined

by (6.63), and (2) the same limit viscositiesμ12, μ13 and μ33, when ε33 → −1, for the
Sachs-Reuss model given by (6.45) and (6.46), and for the Taylor-Voigt model given
by (6.57) and (6.58), are predicted by the two approximations. However, it is seen
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Fig. 6.11 Variation of the
normalized axial and shear
viscosities with the strain ε33
in uniaxial compression for
the crystal rheological
parameters A = 15 and
B = 4 (cold ice). Predictions
of the uniform stress
(Sachs-Reuss) and the
uniform strain (Taylor-Voigt)
models. Adapted from
Staroszczyk (2002), Fig. 4.
Copyright 2002 by the
Institute of Fundamental
Technological Research of
the Polish Academy of
Sciences

that the limit viscosities given by the two models are approached in different ways.
For the uniform stress model, the most significant increase in the fabric strength
occurs for the axial strains ε33 changing from −0.4 to −0.6, with the limit values
reached just after the latter value is exceeded, while for the uniform strain model,
which predicts ‘stiffer’ behaviour of ice, the limit alignment of individual grains, and
hence the limit viscosities, are attained much later, at the strains ε33 close to −1.

6.4 Dynamic Recrystallization Models

In the previous sections of this chapter two micro-mechanical models describing
the mechanism of crystal lattice rotation are presented. The latter mechanism is
active throughout the whole path of the ice descent from the free surface to depth
in polar ice sheets, and plays a major role in the development of the macroscopic
anisotropy of the polycrystalline material. This feature is demonstrated by the results
presented in Sect. 6.3, showing progressive reorientation of crystal c-axes and the
formation of strong single-maximum fabrics under sustained compression and shear.
Such characteristic fabrics are found in ice cores retrieved from large depths of polar
ice sheets. However, as ice particles during their downwardmotion enter near-bottom
regions of polar glaciers, the microstructure of ice often changes dramatically, and
the strong fabrics developed earlier undergo an abrupt destruction. Typically, these
near-base fabrics have crystal c-axes broadly scattered in irregular patterns around
the vertical, or multi-maxima fabrics with very coarse and interlocking grains are
formed (Duval 1981; Duval and Castelnau 1995; De La Chapelle et al. 1998; Duval
et al. 2000; Faria et al. 2014). The micro-mechanism which is responsible for such
behaviour of ice is known as the dynamic (also termed migration, discontinuous
or annealing) recrystallization. This process usually takes place within the deepest
100 m of an ice sheet, at ice near-melting temperatures (that is, above −10 ◦C). Not
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all the factors which initiate and control the dynamic recrystallization mechanism
have been identified yet, but it seems that the most important are high deviatoric
stress, strain, and strain-rate magnitudes, with some role also played by the local
bedrock topography (De La Chapelle et al. 1998; Duval et al. 2000).

The recrystallization process is caused by rapid migration od grain boundaries
between dislocation-free crystals and those with high density of dislocations, and
leads to the nucleation of new grains at the expense of old ones (which eventually
disappear). Thus, on the microscopic scale, the process is controlled by the amount
of energy stored at crystal dislocations piling up on crystal boundaries, and hence
is driven by the differences in concentrations of crystal defects in neighbouring
grains. Spatial orientations of newly formed grains are such that the bulk deforma-
tion of a polycrystal is enhanced. Therefore, the macroscopic result of the process
is significant weakening of the strength of anisotropy of the medium compared to
non-recrystallizing ice. For this reason, the migration recrystallization significantly
modifies the macroscopic response of ice to stress, and therefore has a pronounced
effect on the overall behaviour of polar ice masses, since the latter deform mainly
by shearing in near-base regions; that is, in the regions in which the recrystallization
occurs. Hence, this mechanism is important and has to be accounted for in numer-
ical simulations of ice flows if realistic results are to be obtained. Some examples
illustrating the role of the dynamic recrystallization in the large-scale flows of polar
ice sheets will be given in Chap. 8.

First attempts to describe theoretically the mechanism of dynamic recrystalliza-
tion in ice took place in themid-1990s, and a number ofmodels have been formulated
since then. Van der Veen and Whillans (1994) developed a micro-mechanical model
in which the onset of the mechanism is defined in terms of macroscopic strains in the
polycrystalline aggregate. Staroszczyk and Morland (2001) proposed a phenomeno-
logical model in which, ignoring most of the micro-processes underlying the ice
fabric evolution, the onset of the migration recrystallization is described by means of
a criticalmacroscopic strain-rate invariant. Subsequently,Morland (2002) formulated
another phenomenological model in which the onset of recrystallization is related to
a critical crystal lattice distortion parameter. An unconventional approach based on
the cellular automata method was developed by Ktitarev et al. (2002) and Faria et al.
(2002); their model, however, suffers from its restriction to one-dimensional defor-
mations. Another micro-mechanical model was proposed by Thorsteinsson (2002),
who considered the effects of crystal interactions on the migration recrystallization
process. Amore advancedmodel based on similar ideaswas developedmore recently
by Kennedy et al. (2013). A distinct approach was followed by Faria et al. (2003)
to construct a general theory of recrystallization processes in polycrystalline mate-
rials by employing general principles of thermodynamics. This theory, applied to
polycrystalline ice, was subsequently extended by Faria (2006). Placidi et al. (2010)
constructed a similar model, in which the recrystallizationmechanism is described in
terms of only one parameter. An alternative micro-mechanical approach was pursued
by Staroszczyk (2009, 2011) to develop two models based on the Taylor-Voigt and
Sachs-Reuss approximations, in which the recrystallization process is controlled,
respectively, by microscopic stresses or microscopic strain-rates. A more exhaustive
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(a) (b)

Fig. 6.12 Idealization of the dynamic recrystallization mechanism: hard crystals (a) are replaced
by soft ones (b). Diagonal lines indicate the planes of maximum macroscopic shear stresses in a
polycrystalline aggregate under uniaxial compression

discussion of various aspects of the modelling of recrystallization phenomena in
polar ice can be found in a review paper by Placidi et al. (2006).

Two essential componentswhich a recrystallizationmodelmust include are (1) the
criterion for the onset of recrystallization of an existing grain, and (2) the determi-
nation of the initial spatial orientation of a newly nucleated grain. Following the
observations of De La Chapelle et al. (1998), it is assumed in the models presented
here that themechanismof dynamic recrystallization affects the so-called hard grains
in a polycrystalline aggregate; that is, the grains which are the most stressed in the
present configuration and which can deform with difficulty (hence, are the least
strained). Further, as a results of recrystallization, new soft grains are formed, which
can deform easily in the present configuration and are least stressed. These ideas are
schematically illustrated in Fig. 6.12.

It is commonly accepted (Budd and Jacka 1989; Alley 1992; Van der Veen and
Whillans 1994; De La Chapelle et al. 1998) that new crystals of ice are oriented in
a way that is most favourable for their further creep deformation (which is easiest
by the slip on the crystal basal planes). That is, a newly grown grain is least stressed
in a current stress configuration—this follows from the fact that the most stressed
grains, due to their orientation in an ice polycrystal, are those which deform at the
smallest rates, and vice versa, the least stressed grains are those deforming at largest
rates. In the earlier discrete-grain models (Van der Veen andWhillans 1994; Ktitarev
et al. 2002) it was assumed that the preferred direction of the c-axis of a newly
nucleated crystal is such that its crystal basal planes are parallel to the plane of
the maximum macroscopic shear stress in a polycrystal. In general, when all three
principal macroscopic stresses are different from one another, the maximum shear
planes are inclined at the angles of 45◦ to the principal axes of the maximum and
minimum compressive stresses in the aggregate. Hence, the optimal orientations of
the crystal c-axes of newly formed soft grains are at angles of 45◦ to the principal
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axes of maximum compression. It turns out, however, that the above is true only
in the case of crystals deforming only by the basal glide. When other modes of
crystal creep deformations are also possible, then the optimal orientations of newly
formed crystals differ slightly (by several degrees) from the above direction of 45◦
(Staroszczyk 2009, 2011). This property will be demonstrated below.

In what follows, the discrete-grain models presented in Sects. 6.2 and 6.3, orig-
inally developed for describing the mechanism of crystal lattice rotation, are now
extended to incorporate the mechanism of dynamic recrystallization as well. Three
distinct models are formulated, in which the recrystallization process is driven, in
turn, by microscopic deviatoric stresses, microscopic strain-rates and microscopic
strains. Hence, three different criteria will be adopted to define the onset of the
process of dynamic recrystallization for given macroscopic stress and deformation
fields. For simplicity, the effect of temperature is neglected, by assuming that the
process occurs at constant temperature. The three models described below will be
used to simulate the evolution of the microstructure (fabric) of polycrystalline ice
undergoing migration recrystallization, and to investigate the variation of macro-
scopic viscosities with increasing deformations in simple flow configurations. The
results of these simulations are presented in the next Sect. 6.5.

6.4.1 Stress – controlled Recrystallization

The first variant of the dynamic recrystallization model is based on the assumption
that the process is driven solely by the local stresses acting on individual crystals.
Hence, it is assumed that recrystallize only those crystals in an aggregate which are
most stressed. Accordingly, a microscopic stress magnitude measure, expressed by
the second principal invariant of the deviatoric stress tensor S, is adopted

S2eq = J2 = 1
2 Si j Si j (i, j = 1, 2, 3) , (6.65)

where Seq is termed the equivalent micro-stress, and the summation convention
for repeated indices applies. Further, a critical magnitude of the equivalent micro-
stress, Screq , is introduced, and it is supposed that a given crystal k (k = 1, 2, . . . , Nc)

undergoes recrystallization as long as the equivalent micro-stress S(k)eq in that crystal
exceeds, or equals, the critical equivalent stress magnitude. That is, the recrystalliza-
tion criterion is expressed in the form:

S(k)eq ≥ Screq . (6.66)

In order to account in the model for the effect of temperature on the recrystallization
process, one can follow an approach similar to that applied by Staroszczyk and
Morland (2001) in their phenomenological formulation. In that approach, the critical
stress measure Screq is assumed to be a function of the absolute temperature T in such a
way that Screq decreases as ice temperature increases above some critical level; below
the critical temperature level no recrystallization occurs.
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The dynamic recrystallization model based on the condition (6.66) is constructed
by extending the multi-grain Taylor-Voigt (uniform strain) model described in
Sect. 6.3.2; by construction, the Sachs-Reuss model cannot be used for this pur-
pose as it postulates the stress homogeneity in a polycrystalline aggregate. Recall
that the Taylor-Voigt theory uses the constitutive law (6.32) on p. 178, involving two
dimensionless rheological parameters defining the strength of anisotropy of a single
crystal.

As noted earlier in this section, a crucial ingredient of a recrystallization model is
the method of determination of optimal orientations of crystal c-axes of new grains
which are formed as a result of the recrystallization process. It is a difficult task to
accurately determine such a preferred crystal orientation (that is, the angles ϕ and
θ defining a crystal c-axis orientation in space) for a general macroscopic viscous
flow field. However, it is possible to achieve for simpler configurations: uniaxial
compression and simple shear flows, illustrated in Fig. 6.4 on p. 185 and defined by
Eqs. (6.47)–(6.53). The description of how to derive analytical formulae used for the
determination of the favourable c-axes orientations of soft crystals can be found in
the paper by Staroszczyk (2009). Here only the final results are presented.

First consider an unconfined uniaxial flow, assumed to occur under compressive
stresses applied along the x3-axis. In such a configuration, due to the rotational sym-
metry of the flow field, all the stresses acting on an individual crystal are functions
of only the zenith angle θ and are independent of the crystal azimuth angle ϕ (refer
to Fig. 6.3 on p. 171 for the definitions of the angles ϕ and θ). Thus, the equivalent
stress Seq at a given crystal, given by (6.65), is also a function of only the angle
θ (and, of course, of the material parameters μ0, A and B entering the constitutive
equation). The value of the angle θmin at which the function Seq(θ) attains its mini-
mum value defines the optimal orientation of a new crystal which is nucleated during
the dynamic recrystallization process. For convenience, the microscopic equivalent
stress Seq is normalized by the magnitude of the macroscopic equivalent stress S̄eq in
a polycrystalline aggregate. Hence, a dimensionless function ζeq = Seq/S̄eq is intro-
duced to describe the microscopic stress state at a given crystal in terms of the c-axis
orientation angle θ and the two dimensionless microscopic rheological parameters
A and B. This function is expressed by

ζeq = Seq
S̄eq

= 5

2(A + 2B + 2)
×

× [
3(A2 + B2) sin4 θ + 6A2 cos4 θ + 3 sin2 2θ − 2A2

]1/2
.

(6.67)

It can be easily seen that for an isotropic crystal, described by A = B = 1, relation
(6.67) gives ζeq = 1 irrespective of θ, which means that all crystals in the aggregate
are equally stressed. In the other limit case, of crystals deforming only by basal glide
and described by A → ∞ and B → ∞, relation (6.67) gives

ζeq = Seq
S̄eq

→ 5

6

[
4 − 3 sin2(2θ)

]1/2
. (6.68)
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Fig. 6.13 Normalized
equivalent stress ζeq in
uniaxial compression as a
function of the crystal c-axis
zenith angle θ and the
microscopic rheological
parameters A and B.
Reprinted from Staroszczyk
(2009), Fig. 2. Copyright
2009 by the Institute of
Fundamental Technological
Research of the Polish
Academy of Sciences

The latter expression gives the maximum normalized equivalent stress equal to 5/3
for the crystal c-axis oriented at either θ = 0 or θ = 90◦ (hard crystals), and the min-
imum value of this stress equal to 5/6 for θ = 45◦ (soft crystals). These predictions
are in good quantitative agreement with the results presented byDe La Chapelle et al.
(1998), obtained by applying a viscous-plastic self-consistent model by Castelnau
et al. (1996), in which the resistance of non-basal slip systems was assumed to be
70 times larger than that of basal slip. Also, it follows from (6.67) that for θ = 0,
for any combinations of the rheological parameters A and B, the equivalent stress
Seq/S̄eq is equal to 1/Ea , the reciprocal of the axial enhancement factor.

The variation of the equivalent stress ζeq = Seq/S̄eq , given by (6.67), with the
crystal c-axis zenith angle θ, for various combinations of themicroscopic rheological
parameters A and B, is illustrated in Fig. 6.13. The plots show that, depending on
the strength of anisotropy of the crystal (defined by the parameters A and B), the
most favourable orientation for the crystal c-axis in a polycrystalline aggregate under
uniaxial compression is that defined by the zenith angles θ by a few degrees larger
than 45◦. For the particular values of the rheological parameters A = 15 and B = 4,
best correlating with the observed limit macroscopic properties of cold polar ice, the
optimal inclination of the crystal is at the angle of θmin = 53.86◦ to the axis of the
macroscopic compressive stress.

A more complex case is that of the simple shear flow regime, in which the micro-
scopic stresses at a given grain depend on both crystal orientation angles, ϕ and θ.
Assuming that the deformation takes place in the Ox1x3 plane, the dimensionless
function ζeq is given by the expression (Staroszczyk 2009):

ζeq = Seq
S̄eq

= 5

2(A + 2B + 2)

{
(3A2 + B2) sin2 2θ cos2 ϕ +

+ 4
[
(B2 sin2 θ + cos2 θ) sin2 ϕ + cos2 2θ cos2 ϕ

]}1/2
,

(6.69)



www.manaraa.com

200 6 Micro-mechanical Models for Polar Ice

Fig. 6.14 Normalized
equivalent stress ζeq in
simple shear as a function of
the crystal c-axis orientation
angles θ and ϕ, for the
microscopic rheological
parameters A = 15 and
B = 4 (cold ice). Reprinted
from Staroszczyk (2009),
Fig. 3. Copyright 2009 by
the Institute of Fundamental
Technological Research of
the Polish Academy of
Sciences

which describes the dependence of the microscopic equivalent stress in simple shear
on the material parameters A and B and the crystal c-axis orientation angles θ and ϕ.

It follows from (6.69) that the stress ratio Seq/S̄eq reaches its minimum value,
equal to 1/Es (the reciprocal of the shear enhancement factor) for the crystal c-axis
aligned either along the x3-axis (θ = 0) or along the x1-axis (θ = 90◦ and either
ϕ = 0 or ϕ = 180◦). This means that in the simple shear configuration, irrespective
of the values of the rheological constants A and B, the most favourably oriented
crystals are those with their c-axes lying in the shear plane Ox1x3 and inclined at the
angle 45◦ to the principal axis of compression. The dependence of the normalized
equivalent stress ζeq on the c-axis orientation angles θ and ϕ, for the rheological
parameters A = 15 and B = 4, is illustrated inFig. 6.14.Only the range0 ≤ ϕ ≤ π/2
is considered, due to the symmetry property ζeq(θ,ϕ) = ζeq(θ,π − ϕ) (the contour
plot is symmetric about the co-ordinate line ϕ = π/2). It is seen in the figure that
the most poorly oriented grains (that is, the most stressed) are those with the c-axis
directions defined by θ = 45◦ and either ϕ = 0 or ϕ = 180◦. The first of the latter
two directions is normal, and the other is parallel, to the direction of the principal axis
of compression in the assumed simple shear configuration. For the adopted values
of A and B, the normalized equivalent stress has then the magnitude of about 2.63.

The plots in Figs. 6.13 and 6.14 show how the microscopic equivalent deviatoric
stress depends on the crystal orientation in uniaxial and simple shear configurations.
Certainly, in case of a general flow field, the dependence Seq on ϕ and θ is more
complex. Therefore, it would be very difficult (and computationally costly) to attempt
to find an optimal orientation of the crystal c-axis for any particular (and changing in
time) deformation configuration. Hence, for practical reasons, the c-axis orientation
of a newly formed crystal is determined in the model in such a way that it lies on
a conical surface at the angle θmin to the current principal axis of the maximum
compression, and the angle ϕ is such that the orientation direction of the new grain
is closest to the orientation direction of the old grain, from which the new one is
created. Some arbitrariness of this assumption is realized, but it is chosen in the
proposed dynamic recrystallization model for the sake of simplicity of numerical
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calculations. Two alternative options for the determination of spatial orientations of
newly formed grains were explored by Staroszczyk (2009). However, the numerical
illustrations presented further in Sect. 6.5 show the results of the model based solely
on the assumption described above.

6.4.2 Strain-Rate – Controlled Recrystallization

The second variant of the dynamic recrystallization model stems from the assump-
tion that recrystallize those crystals in a polycrystalline aggregate which deform at
smallest strain-rates, which is a characteristic feature of hard grains. Therefore, an
invariant of the microscopic strain-rate tensor D, defined by

D2
eq = I2 = 1

2 tr D
2 = 1

2Di j Di j (i, j = 1, 2, 3) , (6.70)

is introduced as a deformation measure for identifying hard crystals in the aggregate.
Deq is termed the equivalent strain-rate, and the summation convention for repeated
indices applies in the definition (6.70). To establish a recrystallization criterion, a
critical magnitude of the above invariant, Dcr

eq , is introduced, and it is assumed that a
given grain k (k = 1, 2, . . . , Nc) is subject to recrystallization when the equivalent
microscopic strain-rate in that crystal is less, or equal to, the critical equivalent strain-
rate level. Thus, a grain k recrystallizes if

D(k)
eq ≤ Dcr

eq . (6.71)

As before, the temperature-dependence of the recrystallization process is not con-
sidered, but it can be easily incorporated in the model by assuming that Dcr

eq is a
monotonically increasing function of the absolute temperature of ice.

The recrystallization model based on the criterion (6.71) is constructed as an
extensionof theSachs-Reuss (uniformstress) approachpresented inSect. 6.3.1. In the
latter approach, the creep behaviour of the material is described by the microscopic
constitutive relation (6.26) on p. 176, defining the anisotropic rheological properties
of a single crystal in terms of the dimensionless parameters α and β.

In order to determine the optimal orientations of new grains developing in the
aggregate due to the migration recrystallization mechanism, a method analogous
to that outlined in Sect. 6.4.1 is applied again. Hence, uniaxial and simple shear
flow configurations are considered, for which the local strain-rate components Di j

are determined from the flow law (6.26) as functions of the macroscopic stress, the
crystal orientation angles ϕ and θ, and the microscopic rheological parameters α
and β. This yields the equivalent strain-rate D2

eq defined by (6.70). The latter is
then normalized by means of the corresponding macroscopic equivalent strain-rate
D̄eq for a polycrystal under the same macroscopic stress. As a result, dimensionless
relations similar to those given by (6.67) and (6.69) can be derived as functions of
the crystal c-axis orientation angles. By finding then the values of ϕ and θ for which
the latter functions attain maximum values in a given macroscopic stress field, one
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can determine the spatial orientations that are most favourable for newly nucleated
grains.

The case of the uniaxial compression flow is again a simpler flow configuration
than that of simple shear, because the resulting expression for the equivalent strain-
rate involves only the zenith angle θ (Staroszczyk 2011):

ξeq = Deq

D̄eq
= 5

2(α + 2β + 2)
×

× [
3 (3α2 + β2) sin4 θ − 12α2 sin2 θ + 3 sin2 2θ + 4α2]1/2 .

(6.72)

It follows from Eq. (6.72) that for an isotropic crystal, defined by α = β = 1, we
have ξeq = 1, which means that in this case all crystals in the aggregate deform at
the same rates, irrespective of their spatial orientations. In the other limit case of
crystals creeping only by basal glide, defined by α = β = 0, relation (6.72) predicts
ξeq = 5

4

√
3 sin 2θ. The latter expression is zero for θ = 0 and θ = 90◦ (the crystals

do not deform at all when their c-axes are parallel or normal to the principal axis of
compression), and reaches its maximum value of∼ 2.16 for θmax = 45◦. This means
thatwhen the crystal deforms only by basal slip, then its favourable orientation is such
that the basal plane is exactly parallel to the plane of the macroscopic shear stress.
When, however, othermodes of the crystal creepdeformation are also possible (α > 0
and/or β > 0), then the optimal c-axis orientation slightly differs from θ = 45◦, but
not bymuch. This can be seen in Fig. 6.15, illustrating the variation of the normalized
invariant ξeq with the angle θ for several combinations of the rheological parameters
α and β. For all the cases depicted in the figure, the azimuth angles at which the
function ξeq reachesmaximumvalues arewithin the range 45◦ � θmax � 47◦. Hence,

Fig. 6.15 Normalized strain-rate invariant ξeq = Deq/D̄eq in uniaxial compression as a function of
the c-axis zenith angle θ and the crystal rheological parameters α and β. Hard (slowly-deforming)
crystals are those with orientations close to either θ = 0 or θ = 90◦, and soft (fast-deforming)
crystals are those with orientations around θ = 45◦. Reprinted with permission from Staroszczyk
(2011), Fig. 2. Copyright 2011 by Springer Nature
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the effect of the crystal anisotropy on the value of the optimal grain orientation angle
predicted by the Sachs-Reuss approximation can be regarded as small. Recall that in
the case of the Taylor-Voigt model considered earlier in this section (see Fig. 6.13)
the effect of the crystal anisotropy is more pronounced, with the predicted optimal
values of the zenith angle θ ranging from about 45◦ to about 54◦.

The case of the simple shear flow configuration is very difficult for analytical
treatment, since then, to enforce the deformation field defined by the kinematic
relations (6.51) on p. 185, not only the shear stress components S13 = S31 (for the flow
occurring in the Ox1x3 plane) need to be applied, but also the axial stress components
S11 and S22 (with the inequality S11 
= S22 in general) have to be considered in the
analysis (this property is known as the Poynting effect (Chadwick 1999)). The two
axial stresses S11 and S22 depend on the current shear strain κ, which makes the
analytical determination of the function ξeq(ϕ, θ) for a single crystal even more
complicated. For these reason, the full analysis of the simple shear case is omitted
here.

In the proposed uniform stress migration recrystallization model, the newly
formed crystals, irrespective of the current flow configuration, are assumed to lie
on a conical surface inclined at the angle θmax to the current principal axis of com-
pression, with θmax determined from Eq. (6.72), derived for the uniaxial flow, as
the angle for which the invariant function ξeq reaches its maximum. Further, it is
assumed that the new crystals are distributed at random on this conical surface; that
is, no value of the c-axis azimuth angle ϕ is favoured. The predictions of this model
are presented in Sect. 6.5.

6.4.3 Strain – Controlled Recrystallization

The third version of the dynamic recrystallization model is based on the assumption
that the process is induced by strain incompatibilities between individual crystals
and a polycrystalline matrix in which they are imbedded. Hence, it is postulated that
a given grain starts to recrystallize once a difference between a microscopic strain of
the crystal and the macroscopic strain of the polycrystal, expressed in an invariant
form, reaches a certain threshold value. The threshold strain parameter that defines
the onset of recrystallization is adopted by correlating the model predictions with
observed polar ice fabrics. The grains which undergo recrystallization are replaced
by new grains, the spatial orientations of which are established from the condition
that the initial strain-rates of the newly formed grains are maximized in the current
macroscopic stress configuration (that is, the new crystals are aligned along easy-
glide directions).

In order to describe the local deformations of individual crystals and the macro-
scopic deformation of the polycrystal, the previously introduced deformation gradi-
ent tensor F(X, t) (5.24) and the velocity gradient L(x, t) (6.4) are employed, with
their components given by

Fi j = ∂xi
∂X j

, Li j = ∂vi

∂x j
(i, j = 1, 2, 3). (6.73)
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The two gradients, F and L, describe the evolution of the deformation field with
time in the form of the following kinematic relation (Chadwick 1999):

Ḟ = LF, (6.74)

where the superposed dot denotes the material time derivative. The latter tensorial
equation is used to calculate current strains as the deformation of the body progresses,
starting from an initial unstrained configuration at t = t0, when F = I . A proper
description of the deformation field requires a strain measure be frame-indifferent
(objective), see Appendix B. For this purpose, the Euler-Almansi finite strain tensor,
E, defined by (Spencer 1980)

E = 1
2

(
I − (FFT )−1

)
, (6.75)

is chosen, with components given by

Ei j = 1

2

(
δi j − ∂Xk

∂xi

∂Xk

∂x j

)
(i, j, k = 1, 2, 3), (6.76)

and the symmetry property Ei j = E ji . Note that F itself is not an objective tensor
field.

By employing the deformation measure E, the micro-macroscopic strain differ-
ence for a k-th crystal in the aggregate, denoted by Êk , can be expressed by the
relation

Êk = Ek − Ē (k = 1, . . . , Nc), (6.77)

where Ē is the macroscopic strain tensor describing the bulk deformation of the
polycrystal. To establish a criterion for the onset of the dynamic recrystallization
process, an invariant formof the strain-differencemeasure is required. This is adopted
as the second moment (Truesdell and Noll 2004) of the strain-difference tensor:

I (k)2 = tr Ê
2
k = Ê (k)

i j Ê (k)
j i (i, j = 1, 2, 3). (6.78)

To define the migration recrystallization condition, a critical level of the latter invari-
ant is adopted, I cr2 , and it is assumed that a given crystal k is subjected to recrystal-
lization as soon as the strain-difference invariant I (k)2 in that crystal is greater than, or
equal to, the critical value of the strain difference invariant I cr2 . That is, a k-th crystal
recrystallizes when the following condition is fulfilled

I (k)2 ≥ I cr2 . (6.79)

It is supposed that the value of the critical strain-difference parameter I cr2 is related
to an invariant of the macroscopic strain Ē for the whole polycrystalline aggregate.
Hence, a parameter Ī2 is introduced which, by analogy to (6.78), is defined by
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Ī2 = tr Ē
2 = Ēi j Ē j i (i, j = 1, 2, 3). (6.80)

Accordingly, the critical strain-difference invariant is expressed in the form

I cr2 = ψcr Ī2, (6.81)

so that the recrystallization criterion (6.79) becomes

I (k)2 ≥ ψcr Ī2. (6.82)

The dimensionless parameterψcr entering (6.82) defines the relative threshold strain-
difference at which dynamic recrystallization occurs, and is a free parameter of the
model. Unfortunately, the magnitude of this parameter cannot be determined directly
by correlation with empirical data, as these are not available. Therefore, the value of
this parameter has been evaluated on the basis of the results of numerical simulations
described in the next section. To do this, laboratory observations reported by Jacka
andMaccagnan (1984) and Budd and Jacka (1989) were used, showing girdle fabrics
of recrystallized ice formed in uniaxial compression conditions. For very large axial
strains, these fabrics have steady-size girdles, with all the crystal c-axes distributed
at angles ranging between 25◦ and 45◦ to the principal axis of compression. By the
method of trial and error, it was found that the best fit of the model predictions to the
observations is achieved for ψcr = 0.39. Hence, this particular value of the invariant
was used in all the simulations, the results of which are presented in the following
Sect. 6.5.

Once the dynamic recrystallization of a given grain has been initiated, a new
crystal starts to develop from the old one undergoing recrystallization. The spatial
orientations of the new crystals are determined in the same way as described in
the previous Sect. 6.4.2. Hence, it is assumed that the initial c-axes orientations of
the new crystals favour their viscous deformation in the current macroscopic stress
configurations; that is, the strain-rates of these crystals are maximized in the current
stress field. Thismeans that the new crystal c-axes are distributed on a conical surface
around the current principal axis of maximum compression, at the zenith angles θmax

determined from Eq. (6.72) on p. 202.

6.5 Numerical Simulations

The three multi-grain dynamic recrystallization models described in Sect. 6.4, based
on three different recrystallization criteria, have been used to simulate the behaviour
of polycrystalline ice in sustained uniaxial compression and simple shear flows.
The results of the simulations illustrate the process of the ice fabric evolution with
increasing deformation and time, and show the variation of macroscopic viscosities
with strains. The principal objective of all the simulations was to investigate the
effect of the recrystallization mechanism on the characteristic macroscopic features
of ice. For this purpose, the results obtained for ice undergoing recrystallization are
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compared with the predictions of the models described in Sect. 6.3, in which the
dynamic recrystallization process is not incorporated. Also, inter-comparisons of the
results given by the three proposed recrystallization models are presented.

The simulations were conducted for the rheological parameters pertaining to polar
ice, and for the stress and strain-rate magnitudes typically occurring in flows of
large polar ice sheets. Hence, the macroscopic viscosity of the isotropic ice was
adopted as μ0 = 25 MPa · a (with the unit ‘a’ denoting the year, alternatively, also
the unit ‘yr’ is used in the plots to denote the same). The enhancement factors for
compression and shear were assumed as those for cold ice, that is, Ea = 1/3 and
Es = 5, respectively. The latter determine the microscopic rheological parameter
values A = 15 and B = 4. The calculations were carried out by adopting in the initial
configuration Nc = 1000 discrete grains of equal volumes,with a randomdistribution
of the grain c-axes to represent amacroscopically isotropic polycrystalline aggregate.
It was assumed that the process of nucleation of new grains from the old ones takes
1000 years (so that there are simultaneously two discrete grains in the model, of
varying volumes, during a crystal recrystallization event).Due to the lack of empirical
data, the adopted recrystallization time was chosen arbitrarily, though the values of
similar magnitudes were suggested in the literature (De La Chapelle et al. 1998).

The following four figures illustrate the behaviour of ice predicted by the uni-
form strain model described in Sect. 6.4.1, based on the assumption that the
dynamic recrystallization process is controlled by deviatoric stresses. The results
were obtained by assuming that the uniaxial flow (along the x3-axis) occurred at
the macroscopic strain-rate D̄33 = 10−4 a−1, and the shear strain-rate in the plane
Ox1x3 was D̄13 = 10−4 a−1, both kept constant throughout the flow. The model pre-
dictions for unconfined uniaxial flow are shown in Figs. 6.16 and 6.17. The plots in
the first of these figures illustrate the evolution of the anisotropic fabric, by showing
the distributions of crystal c-axes on equal area Schmidt diagrams. These diagrams
demonstrate how the ice fabric changes with an increasing axial strain ε = 1 − λ3,
shown in the figure, together with the corresponding flow times t (given in thousands
of years). The upper row of diagrams, Fig. 6.16a, displays the development of a typ-
ical single-maximum fabric at large compressive strains when no recrystallization
occurs, similar fabrics were already presented in Fig. 6.5 on p. 186. For comparison,
the lower row of diagrams, Fig. 6.16b, shows the evolution of the ice fabric when the
migration recrystallization process takes place, acting alongside the crystal lattice
rotation mechanism. The presented plots were obtained by assuming that the crystal
recrystallization starts when the equivalent stress ratio ζcreq = Screq/S̄eq is equal to 2.2,
see Eq. (6.67) and Fig. 6.13. The latter particular threshold stress level was chosen by
comparing the model predictions with experimental observations by Budd and Jacka
(1989), indicating that typical fabrics formed in recrystallizing ice under uniaxial
compression have girdles at the angle of about 25◦ to the principal axis of maximum
compression. This means that all the grains with the orientation angles θ � 25◦ are
subject to the dynamic recrystallization. The solid curve in Fig. 6.13 (that for A = 15
and B = 4) shows that the equivalent stress level which corresponds to the limit angle
θ = 25◦ is equal to about 2.2; hence the choice of the latter value of ζcreq = 2.2 for
the simulations. It is seen in Fig. 6.16b that the characteristic girdle fabrics start to
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(a)

(b)

Fig. 6.16 Evolution of fabric in uniaxial compression along the x3-axis as a function of the macro-
scopic axial strain ε=λ3 − 1 and time t (given in thousands of years, kyr) for (a) non-recrystallizing
and (b) recrystallizing ice. Predictions of the uniform strain (Taylor-Voigt) model. Reprinted from
Staroszczyk (2009), Fig. 4. Copyright 2009 by the Institute of Fundamental Technological Research
of the Polish Academy of Sciences

Fig. 6.17 Variation of the
normalized axial viscosity
μ33/μ0 with the lateral
stretch λ1 in uniaxial
compression for
non-recrystallizing ice, and
for ice recrystallizing at
different critical equivalent
stresses ζcreq . Adapted from
Staroszczyk (2009), Fig. 6.
Copyright 2009 by the
Institute of Fundamental
Technological Research of
the Polish Academy of
Sciences

appear at the axial strains as small as ε = −0.5 (two-fold axial compression of ice),
and subsequently fully develop with increasing deformation, which is illustrated by
the strong girdle fabric corresponding to the strain ε = −0.95 (twenty-fold compres-
sion of ice, which is a typical magnitude for bottom layers in polar ice masses).

In the context of the polar ice sheet flow modelling, more important than the
differences in qualitative properties of recrystallizing and non-recrystallizing ice
fabrics are the respective differences between the macroscopic viscosities of ice.
Figure 6.17 illustrates the variation of the dimensionless macroscopic axial viscosi-
ties μ33/μ0 with increasing lateral stretch λ1. Compared are the model results for
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non-recrystallizing ice with those for ice that recrystallizes at different critical stress
ratios ζcreq = Screq/S̄eq . Depending on the specific values of ζcreq illustrated in the
figure, the average macroscopic viscosities (for the stretches λ1 ≥ 2) vary from
μ33/μ0 ∼ 1.36 for ζcreq = 2.8, to the value ∼ 0.57 for ζcreq = 1.5. For ζcreq = 2.2, best
correlating with the observations (see the red line in the figure), the macroscopic
axial viscosities are, on average, slightly less than unity. This means that the recrys-
tallized anisotropic ice is slightly less viscous than the isotropic ice with the random
distribution of the crystal c-axes. A characteristic feature that is seen in Fig. 6.17 is a
non-monotonic, wave-like variation of the axial viscosity with deformation. Such a
quasi-periodic pattern is due to the fact that new crystals are nucleated at similar spa-
tial orientations, favourable for their basal glide, and hence they undergo subsequent
dynamic recrystallization in groups, not in a steady manner. Such ‘recrystallization
waves’ have been hinted by Duval and Castelnau (1995) as a possible mechanism
occurring in natural ice, producing a sequence of alternating softening/hardening
phases experienced by the material during its creep.

The results of simulations for the simple shear flow regime are presented in
Figs. 6.18 and 6.19. The evolution of the anisotropic microstructure with increasing
shear strain κ and time t is illustrated by the diagrams in Fig. 6.18. Again, the crys-
tal c-axis distributions for non-recrystallizing, (a), and recrystallizing ice, (b), are
shown. The results were obtained for the same value of the critical equivalent stress
as for the axial compression case; that is, for ζcreq = Seq/S̄eq = 2.2. Comparison of

(a)

(b)

Fig. 6.18 Evolution of fabric in simple shear in the Ox1x3 plane as a function of the macroscopic
sher strain κ and time t (in thousands of years) for (a) non-recrystallizing and (b) recrystallizing
ice. Predictions of the uniform strain (Taylor-Voigt) model. Reprinted from Staroszczyk (2009),
Fig. 7. Copyright 2009 by the Institute of Fundamental Technological Research of the Polish
Academy of Sciences
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Fig. 6.19 Variation of the normalized shear viscosity μ13/μ0 with the shear strain κ in simple
shearing for non-recrystallizing ice, and for ice recrystallizing at different critical equivalent stresses
ζcreq . Adapted from Staroszczyk (2009), Fig. 9. Copyright 2009 by the Institute of Fundamental
Technological Research of the Polish Academy of Sciences

the diagrams in the upper and lower rows shows that the most significant differences
between the fabrics developing in non-recrystallizing and recrystallizing ice occur
at small shear strains κ. When only the lattice rotation mechanism operates, see dia-
grams in Fig. 6.18a, the crystal c-axes first rotate towards the plane Ox2x3 (normal
to the plane of the plot), and then, for very large shear strains (κ � 10), they start to
cluster around the x3-axis, the latter becoming the principal axis of compression at
κ → ∞. In the case of the migration recrystallization mechanism being active, see
diagrams in Fig. 6.18b, the unfavourably oriented grains (those with the c-axes near
the plane Ox1x3 and at the angles of about 45◦ to the x3-axis) are replaced by new
grains, which are much better oriented for basal glide. These new grains, with the
c-axes once getting around the x3 axis, remain at these stable orientations, at which
they do not undergo any further recrystallization. It can be seen in Fig. 6.18b that by
the time the shear strain κ exceeds a magnitude of about 5, most of the crystals have
already reached stable orientations near the plane Ox2x3, so that further shearing
does not cause any significant changes in the fabrics, which eventually become very
close to those for non-recrystallizing ice at the same strain levels κ � 10.

Finally, Fig. 6.19 demonstrates how the macroscopic shear viscosities μ13/μ0 are
affected by the magnitude of the critical equivalent stress ζcreq . It can be observed
that, irrespective of the critical stress level ζcreq , the irregular changes in the viscosity
values, reflecting the activity of recrystallization processes taking place on themicro-
scopic level, are essentially confined to the range of small shear strains, κ � 2.5. It
can be also noted that the softening effect of the dynamic recrystallization on the
creep behaviour of ice in simple shear is limited to the range of small strains. For
larger strains, κ � 10, the behaviour of the polycrystalline aggregate is practically
insensitive to the magnitude of the stress controlling the process of recrystallization,
and the macroscopic shear viscosities have practically the same values, whether or
not the material has previously recrystallized.
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Now the predictions of the two versions of the uniform stress (Sachs-Reuss)
model are presented, in which the dynamic recrystallization mechanism is assumed
to be either strain-rate or strain – controlled. These two models will be denoted here
as SR-D and SR-F models, respectively, while the above discussed uniform strain
(Taylor-Voigt) model will be called the TV model. As in the Taylor-Voigt model
simulations, the viscous properties of polycrystalline ice are defined by the axial and
shear enhancement factors equal to Ea = 1/3 and Es = 5, respectively. Since the
predictions of the two Sachs-Reuss recrystallization models will be compared with
the results given by the Taylor-Voigt model, the microscopic rheological parameters
α = 1/15 and β = 1/4 are adopted, as these values yield exactly the desired limit
macroscopic behaviour of ice in the Taylor-Voigt approximation. The adopted com-
bination ofα and β gives the favourable crystal c-axis orientation angle θmax ≈ 45.4◦
for new grains nucleated during the dynamic recrystallization process (see the solid
line in Fig. 6.15 on p. 202).

The calculations were carried out with the same input parameters as those used in
the uniform strain recrystallizationmodel, the results ofwhich are presented earlier in
this section. Thus, the macroscopic isotropic ice viscosity was μ0 = 25 MPa· a, and
the macroscopic deviatoric stresses (changing in time) applied to the ice polycrystal
were such that the strain-rates were constant and equal to D̄33 = 10−4 a−1 in the
uniaxial compression flow along the x3-axis, and D̄13 = 10−4 a−1 in the simple
shear flow in the plane Ox1x3. The diagrams in Fig. 6.20 illustrate the evolution of
the anisotropic ice fabric with axial deformation ε33=λ3 − 1 and time t , predicted
by the Sachs-Reuss model based on the strain-rate recrystallization criterion. One
can see that the girdle-like fabrics shown in the figure are very similar to those
presented in Fig. 6.16b, predicted by the Taylor-Voigt model with the deviatoric
stress recrystallization condition. The only exception is that the SR-D formulation
predicts much faster removal of grains oriented at high zenith angles (θ � 75◦) than
the TV approximation. The results presented in Fig. 6.20 were obtained by assuming
that the recrystallization is controlled by the critical strain-rate invariant level ξcreq = 1,
as this particular value ensures that the girdles are formed at the angle of about 25◦
to the axis of compression, as observed in polar ice samples (Budd and Jacka 1989;
Gow et al. 1997).

Fig. 6.20 Evolution of recrystallizing ice fabric in uniaxial compression along the x3-axis as a
function of the macroscopic axial strain ε33=λ3 − 1 and time t (given in thousands of years).
Predictions of the SR-D model. Reprinted with permission from Staroszczyk (2011), Fig. 3b.
Copyright 2011 by Springer Nature
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Fig. 6.21 Variation of the normalized macroscopic axial viscosity μ33/μ0 with the axial strain
ε33 = λ3 − 1 in uniaxial compression of recrystallizing ice, for different levels of the critical strain-
rate invariant ξcr = Deq/D̄eq . Predictions of the SR-D model

Fig. 6.22 Evolution of recrystallizing ice fabric in uniaxial tension along the x3-axis as a function
of the macroscopic axial strain ε33=λ3 − 1 and time t (given in thousands of years). Predictions
of the SR-D model. Reprinted with permission from Staroszczyk (2011), Fig. 6b. Copyright 2011
by Springer Nature

Figure 6.21 presents the evolution of the normalized axial viscosity μ33/μ0 with
increasing deformation measured by the axial strain ε33 = λ3 − 1, ε33 ≤ 0, starting
from an initial isotropic state of the polycrystal. The plots demonstrate the effect of
the critical level of the strain-rate invariant ξcreq on the magnitude of the macroscopic
viscosity of recrystallizing ice; the variation of μ33/μ0 for non-recrystallizing ice is
also shown for reference. It is seen that the softening effect of the recrystallization
process is significant. For instance, in the case of ξcreq = 1, best correlating with the
observations, an average value of μ33/μ0 at large deformations is equal to about 0.87.
It is worth noting that a corresponding result predicted by the Taylor-Voigt model
is 0.85 (Staroszczyk 2009), see also Fig. 6.17, so the two approximations yield the
results that agree very well.

The next two figures illustrate the behaviour of recrystallizing ice under uniaxial
tension. The pole diagrams in Fig. 6.22 display the evolution of the oriented structure
of ice with increasing axial deformation, measured by the strain ε33 along the axis
of tension, x3. It can be seen that the migration recrystallization process leads to
the removal of the grains at high (that is close to 90◦) zenith angles, which gives
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Fig. 6.23 Variation of the normalized macroscopic axial viscosity μ33/μ0 with the axial strain
ε33 = λ3 − 1 in uniaxial tension of recrystallizing ice, for different levels of the critical strain-rate
invariant ξcr = Deq/D̄eq . Predictions of the SR-D model

rise to girdle fabrics. However, compared to the case of uniaxial compression, see
Fig. 6.20, the girdles are now broader, with the majority of crystal c-axes having,
for strains ε33 � 0.5, the orientations within the range 55◦ � θ � 75◦. Correspond-
ing to the previous plots is Fig. 6.23, demonstrating the evolution of the normalized
macroscopic viscosity μ33/μ0 with increasing axial extension, for various magni-
tudes of the critical strain-rate invariant ξcreq . For reference, the viscosity variation
of non-recrystallizing ice is also shown. We observe that for ξcreq = 1, for which the
fabrics plotted in Fig. 6.22 were obtained, an average viscosity of μ33/μ0 = 0.89
is not much different from that in compression (0.87). Further, we see in Fig. 6.23
that the characteristic wave-like behaviour of a polycrystal under tensile stress is
much less pronounced than in the case of compression. The latter is due to the fact
(observed in the simulations) that, at given time and stress, an average number of
grains undergoing recrystallization is smaller in uniaxial tension than it is in the case
of uniaxial compression. More results obtained by applying the multi-grain TV and
SR-D dynamic recrystallization models can be found in the papers by Staroszczyk
(2009, 2011).

Now consider the predictions of the uniform stress model incorporating the strain-
incompatibility recrystallization criterion (the SR-F model). Figure 6.24 illustrates
the evolution of the anisotropic fabric with increasing axial strain ε33 in unconfined
uniaxial compression, by showing the distribution of the crystal c-axes in pole dia-
grams plotted on the plane normal to the principal axis of compression. It is seen that
the presented girdle-like fabrics are very similar to those predicted by the other two
approaches (TV and SR-D), shown in Figs. 6.16b and 6.20, though the strains ε33
at which similar fabrics occur are slightly different, with larger discrepancies occur-
ring at the initial stages of deformation. It appears from the diagrams in Fig. 6.24
that the effects of the two counteracting mechanisms, the crystal lattice rotation and
the migration recrystallization, start to balance each other at axial strains ε33 ∼ −0.5
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Fig. 6.24 Evolution of recrystallizing ice fabric in uniaxial compression along the x3-axis as a
function of the macroscopic axial strain ε33=λ3 − 1 and time t (given in thousands of years).
Predictions of the SR-F model

Fig. 6.25 Changes in the distribution of the crystal c-axis zenith angles θ with increasing time and
axial strain in uniaxial compression of recrystallizing ice. Predictions of the SR-F model

(twofold axial compression of the material), and at the later stages of the deformation
the characteristic girdles have approximately the same width.

In order to gain some quantitative insight into the development of the girdle
fabrics, Fig. 6.25 shows histograms of the crystal c-axis distributions for different
axial strains ε33. In the diagrams, the zenith angle θ = 0 corresponds to a crystal with
its c-axis directed along the principal axis of compression x3, while θ = 90◦ indicates
a crystal with its c-axis being normal to x3-axis (refer to Fig. 6.3 on p. 171). The plots
illustrate the process of gradual formation of the anisotropic microstructure starting
from the initially isotropic fabric, up to thewell developed girdle fabric (the rightmost
diagram). In the latter plot, for ε33 = −0.91 (about an eleven-fold compression of a
sample of ice), one can see that the majority of crystal c-axes are between the zenith
angles 20◦ and 50◦, forming a roughly symmetric distribution centred at θ ∼ 35◦.
This prediction agrees well with the observations (Jacka and Maccagnan 1984),
proving thus that the threshold strain-difference parameter ψcr = 0.39 was properly
selected.

More quantitative information on the process of girdle fabric evolution and the
corresponding changes in the c-axis distribution can be inferred from the plots in
Fig. 6.26. The plots illustrate the variations in time of the 5, 50 and 95th percentiles of
the c-axis zenith angle distributions in fabrics formed in icewhich recrystallizes under
uniaxial compressive stress. A very characteristic feature is observed, consisting of
periodic, and regular, changes in themicrostructure of ice, beginning from the second
cycle of the dynamic recrystallization process. This feature seems to support the
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Fig. 6.26 Variation in time
of the 5th, 50th and 95th
percentiles of the c-axis
zenith angles θ distribution
in uniaxial compression of
recrystallizing ice.
Predictions of the SR-F
model

Fig. 6.27 Comparison of the
normalized macroscopic
axial viscosities μ33/μ

T V
0 in

uniaxial compression for
non-recrystallizing and
recrystallizing ice, predicted
by two variants of the
Sachs-Reuss models (SR-D
and SR-F) and the
Taylor-Voigt model(TV)

concept of the existence of ‘recrystallization waves’ in polycrystalline ice subjected
to sustained compressive stresses.

The following Fig. 6.27 compares the predictions of the three recrystallization
models described in Sect. 6.4, showing the variation of the macroscopic viscosi-
ties μ33/μ

T V
0 with axial strain ε33 (note that the viscosities are normalized by the

magnitude of the isotropic ice viscosity μT V
0 predicted by the uniform strain approx-

imation). The axial viscosities for non-recrystallizing ice, given by the two limit,
uniform stress (SR) and uniform strain (TV), approximations are plotted in the figure
as well. It is seen that both the strain-rate – induced (SR-D) and the strain–induced
(SR-F) versions of the uniform stress (Sachs-Reuss) model yield very similar mag-
nitudes of the axial viscosity. It is worth noting that the latter predictions for the
recrystallizing cold ice axial viscosity are very close to the viscosities measured in
the laboratory for warm ice at relatively high strain-rates by Budd and Jacka (1989),
in which case they are equal to 1/Ea = 1/3 (the reciprocal of the axial enhancement
factor Ea = 3 for the cold ice). Some noticeable differences between the viscosities
predicted by the SR-D and SR-F models occur only at small strains, which can be
explained by the fact that some period of time (that is, some macroscopic deforma-
tion) is required for strain differences between crystals and the matrix to accumulate
before the recrystallization process is initiated. Therefore, the process starts earlier
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Fig. 6.28 Evolution of recrystallizing ice fabric in simple shear in the Ox1x3 plane as a function
of the macroscopic shear strain κ and time t (given in thousands of years). Predictions of the SR-F
model

when it is controlled by strain-rates (compare the curves labelled SR-D and SR-
F). Obviously, the viscosities of recrystallized ice predicted by the uniform strain
(Taylor-Voigt) theory, representing the upper bound approximation, are larger than
those given by the lower bound Sachs-Reuss approximation. Quantitatively, they
differ roughly by a factor μT V

0 /μSR
0 defined by (6.62) on p. 191 (equal to 2.5667 for

the microscopic rheological parameters A = 1/α = 15 and B = 1/β = 4 used in
the simulations to describe the properties of cold ice).

Finally, the results of the simulations of the simple shear flow, assumed to occur
in the Ox1x3 plane, are presented. Figure 6.28 illustrates the fabric evolution with
increasing strain κ and time t for ice undergoing recrystallization, predicted by the
strain–induced Sachs-Reuss (SR-F) model. The crystal c-axes distributions are plot-
ted on the plane Ox1x2, being the macroscopic glide plane. The model predicts, for
sufficiently large shear strains (κ � 2 say), the development of characteristic two-
maxima fabrics, with a stronger maximum occurring in the direction of the principal
axis of compression (in the central part of the diagrams). These two-maxima fabrics,
predicted by the SR-F model, are in a very good agreement with the fabrics found
in polar ice and shown by Duval (1981), Alley (1992) and Paterson (1994). Note
that these fabrics qualitatively differ from those illustrated in Fig. 6.18b, obtained by
employing the Taylor-Voigt model, with the deviatoric stress controlling the recrys-
tallization process. As the shear deformation continues, then, due to repeating recrys-
tallization events, the number of crystals forming the stronger c-axes concentration
gradually increases, while the number of crystals in the other, weaker, concentration
decreases. The prediction of such a mechanism supports a hypothesis of Paterson
(1994), based on energy considerations. Eventually, at very large strains, κ � 10, the
weaker maximum disappears, and a very strong single-maximum fabric is formed,
resembling that developing under uniaxial compression of non-recrystallizing ice,
see Fig. 6.16a on p. 207.

The last Fig. 6.29 illustrates the variation of the macroscopic shear viscosities
μ13/μ

T V
0 with shear strain κ, and compares the predictions of the three migration

recrystallization models. As previously in Fig. 6.27, the viscosity variation of non-
recrystallizing ice (the black line) is plotted for reference. One can observe that the
results given by the two variants of the uniform-stress formulations (SR-D and SR-
F) differ noticeably only within the range of small strains, κ � 0.8. With increasing
shear deformation, the discrepancies between the results of all the three proposed
models steadily decrease, so that at large strains, κ � 7, they become practically neg-
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Fig. 6.29 Comparison of the
normalized macroscopic
shear viscosities μ13/μ

T V
0 in

simple shear for
non-recrystallizing and
recrystallizing ice, predicted
by two variants of the
Sachs-Reuss models (SR-D
and SR-F) and the
Taylor-Voigt model (TV)

ligible, and the SR-F, SR-D and TV approaches yield the macroscopic shear viscosi-
ties prescribed by the limit 1/Es = 0.2 (recall that Es denotes the shear enhancement
factor, a macroscopic quantity used to calibrate the models).
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Chapter 7
Phenomenological Constitutive Models
for Polar Ice

In Chap. 6, by following themicro-mechanical approach, several constitutive models
for the description of the macroscopic creep behaviour of polar ice are formulated.
These models have been derived from the properties of individual ice crystals, for
which microscopic constitutive laws are first developed, and then used to determine
the macroscopic behaviour of a polycrystalline aggregate by applying either the
uniform stress or uniform strain homogenization techniques.

In this chapter a fundamentally different method is applied, in which the macro-
scopic properties of polar ice are described entirely in terms of the macroscopic
quantities that can be measured empirically; that is, no variables which define the
underlying microstructure of the material are involved in the constitutive descrip-
tion. Hence, a phenomenological theory is formulated which expresses macroscopic
stresses in terms of macroscopic strains and strain-rates, and which also enables the
description of the evolving macroscopic anisotropy of polycrystalline ice. However,
unlike the common phenomenological models, the proposed constitutive theory does
account, although indirectly, for some important microscopic mechanisms which
induce the development of the macroscopic anisotropy in the material, such as the
mechanism of the crystal lattice rotation described in detail in Chap. 6. In the con-
stitutive models discussed below it is deduced that the ice fabric which develops
from an initially isotropic state at the free surface of an ice sheet is macroscopi-
cally orthotropic, and retains orthotropic symmetries during its further evolution as
ice descends downwards through an ice sheet; the motivation for such an approx-
imation is given in Sect. 7.1. A general frame-indifferent orthotropic viscous flow
law expressing deviatoric stress in terms of strain-rate, strain, and three structure
tensors defining orthotropic symmetries in the material is formulated in Sect. 7.2.
This general form of the constitutive equation is subsequently reduced in Sect. 7.3 to
enable the model correlation with the results of laboratory tests. The reduced model
is then applied to illustrate the behaviour of ice in continued uniaxial compression
and simple shear configurations. Alternative forms of the orthotropic flow laws are
presented in Sects. 7.4 and 7.5. The last section of the chapter deals with the formu-
lation of phenomenological constitutive models describing the process of dynamic
recrystallization of polar ice.
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7.1 Continuum Mechanics Preliminaries

The macroscopic constitutive laws considered in this chapter are motivated by a
simple picture of individual ice crystal easy glide planes (crystal basal planes) being
rotated towards planes normal to principal axes of compression, and away fromplanes
normal to principal axes of extension (seeFig. 6.2 onp. 169). Suchplanes, the normals
of which are principal stretch axes, are henceforth called principal stretch planes.
Given that the initial macroscopic isotropy of ice implies a random distribution of
crystal easy glide planes symmetrically distributed about all planes, it is assumed
that the new orientations of the glide planes will then be distributed symmetrically
about the principal stretch planes, and so the new instantaneous creep response
of ice will have reflectional symmetries in these planes. Thus, the instantaneous
response of thematerial is orthotropic with respect to current principal stretch planes.
This idealized view of rotating crystal basal planes, retaining reflectional material
symmetries in a current orthogonal system of three principal stretch planes, asserts
that the instantaneous creep response due to glide on all crystal basal planes must
satisfy the orthotropic symmetry. That is, orthotropic symmetry is maintained, but
the three planes of reflectional symmetry evolve as the deformation proceeds, so
while each deformed configuration has an orthotropic symmetry, this is with respect
to changing symmetry planes (Morland and Staroszczyk 1998).

The above overview ignores the local behaviour of individual crystals, the defor-
mations of which, in general, will induce a fabric with nomaterial symmetries, rather
than a fabric with orthotropic symmetries. Nonetheless, it is believed that the actual
fabric will not considerably differ from the orthotropic fabric assumed to occur. Fur-
ther, it is also supposed that the induced anisotropy of the material depends only
on the evolving current deformation, and not on the deformation history, though
it is realized that the effects of individual crystal interactions may depend on the
nature of the deformation process, and therefore induce different fabrics for different
deformation paths.

The local deformation field is described by means of the material (referential)
deformation gradient tensor F, with the components defined by

Fi j = ∂xi
∂X j

(i, j = 1, 2, 3), (7.1)

where xi and X j denote the spatial andmaterial Cartesian coordinates, respectively.A
plane view of the macroscopic deformation of a polycrystalline aggregate, described
by the tensor F, and the rotation of a symmetric quadruple of crystal easy glide
planes (represented by four solid lines inside each rectangle), is illustrated in Fig. 7.1
(Morland and Staroszczyk 1998).

The deformation gradient F, like any second-order tensor, can be decomposed,
applying the polar decomposition theorem, into a product of two second-order tensors
(Spencer 1980; Chadwick 1999; Truesdell and Noll 2004): an orthogonal tensor and
a positive definite symmetric tensor; that is,
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Fig. 7.1 Plane view of
deformation of a material
element, illustrating the
polar decomposition of the
deformation gradient F, and
showing the rotation of a
symmetric quadruple of
crystal easy glide planes
(represented by four solid
lines inside each rectangle)

F = RU = V R. (7.2)

In Eq. (7.2), R, the rotation tensor, is a proper orthogonal tensor, with the properties
R−1 = RT and det R = +1. The tensors U and V are both symmetric and positive
definite, and are termed, respectively, the right and the left stretch tensors. The
principal stretches λr (r = 1, 2, 3) are along the principal axes ē(r) (unit vectors) of
U in the first decomposition, and along the principal axes e(r) of V in the second
decomposition, and the principal unit vectors are related by

ē(r) = Re(r). (7.3)

The principal stretches λr along the principal stretch axes e(r) or ē(r) are the three
eigenvalues (necessarily real and positive) of the equations

det(U − λI) = 0 or det(V − λI) = 0, (7.4)

and
Uē(r) = λr ē(r), Ve(r) = λr e(r). (7.5)

Ice is assumed to be incompressible, so that

det F = detU = det V = λ1λ2λ3 = 1, (7.6)
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and, without loss of generality, we adopt the ordering

λ1 ≥ λ2 ≥ λ3, λ1 ≥ 1, λ3 ≤ 1. (7.7)

In the plane view in Fig. 7.1, a general deformation F which an element of ice
undergoes, is illustrated as a combination of either triaxial stretch (described by
U) followed by a rigid body rotation (represented by R), or a rigid body rotation
followed by triaxial stretch (given by V ). The square with unit sides, shown in
Fig. 7.1, represents macroscopically isotropic ice that has not deformed yet, with the
principal stretches λ1 = λ2 = λ3 = 1. Any crystal basal plane in the aggregate will
have three others symmetrically oriented with respect to the chosen coordinate axes.
As the polycrystalline aggregate deforms, the easy glide planes are rotated towards a
plane normal to a principal axis of compression, λr < 1, and away from that normal
to a principal axis of extension, λr > 1. The symmetric distribution of the easy glide
planes implies that reflectional symmetry in the three orthogonal principal stretch
planes is maintained throughout the whole deformation process, either viewed in the
non-rotated axes ē(r), or in the rotated axes e(r).

As the crystal basal planes are those over which the ice can shear most easily,
this implies that macroscopic shearing over the principal stretch planes should have
ease of shearing, with fluidities (reciprocal viscosities) ordered by respective normal
compressions, or inverse stretches, λ−1

r . Furthermore, the relative magnitudes of
such shear viscosities should depend on the mean rotations, and hence on, at least,
the inverse stretches λ−1

r . An instantaneous viscous creep response of the material
must therefore include dependence on at least the principal stretches as arguments
of response coefficients, but possibly more generally on the deformation. The most
simple approach to a constitutive law which captures an evolving orthotropic fabric
suggested by the above picture is to relate the Cauchy stress to strain-rate, current
deformation and a set of tensors describing reflectional symmetries in the material.

7.2 General Orthotropic Constitutive Law

In order to account for the orthotropic symmetries at each deformed configuration,
thematerial response of the body is described in terms of three orthogonal unit vectors
along the current principal stretches λr (r = 1, 2, 3). These orthogonal vectors, either
ē(r) in the non-rotated configuration, or e(r) in the rotated configuration, define the
axes of the orthotropic material symmetry, and determine three structure tensors
given by their respective outer (dyadic) products as

M̄
(r) = ē(r) ⊗ ē(r) or M(r) = e(r) ⊗ e(r) (r = 1, 2, 3). (7.8)

The above tensors are used in the constitutive formulation to describe the three planes
of the orthotropic symmetry in the material.
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Since the directional strengths of the creep response, that is the degrees of the
crystal basal planes alignment towards the principal stretch planes, depend on the
current deformation, the orthotropic constitutive law needs to involve at least the
three principal stretches, as the latter, according to the rotation picture described in
Sect. 7.1, govern the rotation of easy glide planes. Necessarily, the dependence of the
creep response on the principal stretches must be expressed in a symmetric manner,
since there can be no material distinction between the principal stretch axes.

Anyvalid constitutive lawhas to satisfy theprinciple ofmaterial frame-indifference
(or objectivity), which requires material properties to be independent of an observer
(see Appendix B). In mathematical terms, the principle of objectivity requires the
directions associated with vector and tensor fields be unaltered by a frame trans-
formation preserving the essential properties of space and time (Truesdell and Noll
2004; Chadwick 1999). The theory of the objective constitutive relations was pio-
neered by Rivlin and his associates (see, for instance, Ericksen and Rivlin 1954;
Rivlin and Ericksen 1955; Rivlin 1955; Smith and Rivlin 1957; Smith 1994), and
has been extensively developed since then (see reviews by Spencer 1987a, b).

We are concerned with a symmetric tensor relation for deviatoric stress in terms
of strain-rate, strain, and three structure tensors defining orthotropic response with
respect to the current principal stretch planes, or alternatively, for strain-rate in terms
of the other variables. The Cauchy stress, strain-rate, and structure tensors (7.8) are
all frame-indifferent. As regards the deformation measures, from among the three
tensors F, U and V , only the left stretch tensor V is frame-indifferent, whereas the
other two are not (Hunter 1983; Liu 2002). For this reason, the tensor V must be
used in a constitutive relation as the deformation measure, together with the stress,
strain-rate and structure tensors. However, for a given deformation field described
by F, the direct calculation of V from (7.2) is inconvenient. Instead, it is much
simpler to use a frame-indifferent tensor which is closely related to V , namely the
left Cauchy-Green deformation tensor B, defined by

B = V 2 = FFT . (7.9)

It can be easily proved that the principal directions of B coincide with the current
stretch axes of V , and the principal values br (r = 1, 2, 3) of B are the squares of
the corresponding principal stretches λr . Thus,

det(B − br I) = 0, Be(r) = br e(r), br = λ2
r (r = 1, 2, 3), (7.10)

and, by ice incompressibility,

det B = b1b2b3 = 1. (7.11)

Hence, the deformation measure B which will be used in the constitutive law is
expressed directly, by (7.9), in terms of the deformation gradient F. The evolution
of the deformation field with time is governed by the kinematic relation
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Ḟ = LF, (7.12)

where the superposed dot denotes the material time derivative, and L is the spatial
velocity gradient tensor, with the components given by

Li j = ∂vi

∂x j
. (7.13)

With the above definition, the deformation evolution equation (7.12) becomes

Ḟi j = ∂Fi j
∂t

+ vk
∂Fi j
∂xk

= Lik Fkj (i, j, k = 1, 2, 3), (7.14)

where the summation convention for repeated subscripts applies.
We focus on a viscous constitutive law which expresses stress in terms of strain-

rate and strain, which is the most convenient form to use with the momentum balance
equations. An inverse law, expressing strain-rate in terms of stress and deformation,
is considered in Sect. 7.4. Due to the ice incompressibility assumption, the hydro-
static pressure is not prescribed by the constitutive equation. Therefore, the viscous
behaviour of the material is entirely governed by the deviatoric stress, defined by
(6.12) on p. 174. Accordingly, a general frame-indifferent orthotropic representation,
relating one symmetric tensor (in our case the deviatoric Cauchy stress S) to two
other symmetric tensors (the strain-rate D and the left Cauchy-Green deformation
B) is expressed in the following form (see Appendix B, Eqs. (B.10) and (B.11) on
p. 325):

S =
3∑

r=1

[
φrM(r) + φr+3

(
M(r)D + DM(r)

) + φr+6
(
M(r)B + BM(r)

)] +

+ φ10D2 + φ11B2 + φ12 (BD + DB) , (7.15)

where the 12 response coefficients φi (i = 1, . . . , 12) are the functions of 19 invari-
ants Ik (k = 1, . . . , 19) formed from the tensors M(r), D and B:

Ir = trM(r)D, Ir+3 = trM(r)B, Ir+6 = trM(r)D2,

Ir+9 = trM(r)B2, Ir+12 = trM(r)BD (r = 1, 2, 3),

I16 = tr BD2, I17 = tr B2D, I18 = det D, I19 = det B.

(7.16)

Due to the ice incompressibility condition (7.11), only 18 invariants are nontrivial,
since I19 = det B = 1. Further constraints on the material response functions φi and
the invariants Ik are imposed by a viscous response in which the deviatoric stress
vanishes when there is no motion; that is, when the strain-rate vanishes.

The general flow law defined by Eq. (7.15), with 12 response functions and 18
invariants as their possible arguments, is far beyond a theory that can be correlated
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with available experimental data for polar ice. For this reason, relation (7.15) has to
be significantly simplified by reducing the number of the functions φi and invariants
Ik . The simplification should be carried out in such a way that the main features
of the observed creep behaviour of ice are captured, and all the coefficients in the
reduced constitutivemodel canbedetermined in feasible laboratory tests. Themethod
based on the concept of so-called instantaneous directional viscosities (Morland and
Staroszczyk 1998; Staroszczyk and Morland 2000a; Staroszczyk 2004), which can
be measured in a series of simple shear tests, is applied here to simplify the general
form (7.15).

Accordingly, let us consider an ice element, the current deformation of which is
described by distinct principal stretches λ1, λ2, λ3 along the fixed coordinate axes
x1, x2, x3 as follows:

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, λ1λ2λ3 = 1, (7.17)

where X1 , X2 , X3 are ice particle coordinates in the initial (undeformed) isotropic
reference state. The left stretch tensor V , the deformation gradient tensor F, the
rotation tensor R, and the left Cauchy-Green deformation tensor B are given then
by

V = F =
⎛

⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ , R = I, B =
⎛

⎝
λ2
1 0 0
0 λ2

2 0
0 0 λ2

3

⎞

⎠ . (7.18)

Since the principal stretch axes e(r) coincide in the above configuration with the
coordinate axes, therefore the three structure tensors M(r) (7.8) are defined by the
single diagonal element matrices

M(1) =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , M(2) =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , M(3) =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ . (7.19)

Let remove now the stress and strain-rate, so the fabric defined by the current axial
stretches λ1, λ2 and λ3 is ‘frozen’, and consider instantaneous responses to shearing
performed in different directions on different coordinate planes. For simple shear
performed in the xi direction on a glide plane which is normal to the x j direction
(i �= j), with no summation implied by a repeated index, the new deformation field
is defined by

xi = λi Xi + κi j X j , x j = λ j X j , xk = λk Xk , (7.20)

where i, j, k are distinct permutations of 1, 2, 3, and κi j is a shear strain in the Oxi x j

plane. For the shearing occurring in the latter plane, all the components of the strain-
rate tensor D are zero except the two symmetric entries Di j = Dji . Such a flow
configuration induces a viscous response, described by the law (7.15), in which the
deviatoric stress tensor has, in general, three non-zero diagonal components and two
non-zero off-diagonal symmetric components Si j = Sji . Instantaneously, when the
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shearing has only started and the strain κi j is very small, the deformation field is still
described be the tensor B given by (7.18)3, and the related three structure tensors are
expressed by (7.19). The symmetric tensor generators in Eq. (7.15) have then, for
i �= j , the following instantaneous (i j) components, equal to the ( j i) components:

(
M(r)D + DM(r)

)
i j =

{
Di j (r = i or r = j)

0 (r �= i and r �= j)
, (7.21)

(
M(r)B + BM(r)

)
i j = 0,

(
D2)

i j = 0,
(
B2)

i j = 0, (7.22)

(BD + DB)i j = (bi + b j )Di j , (7.23)

where bi = λ2
i and b j = λ2

j are the principal values of B. The diagonal components
of the instantaneous deviatoric stress S are of no interest at this point, since they
do not contribute to the instantaneous shear response of the material. Expressions
(7.21)–(7.23) show that only four response functions entering Eq. (7.15), namely
φ4, φ5, φ6 and φ12, can be detected in simple shear tests. Therefore, only these four
functions will be retained in the reduced model considered further.

7.3 Reduced Orthotropic Flow Law

In view of the results presented in the previous section, the general orthotropic flow
law (7.15) is reduced to the form that retains only the terms which contribute to the
instantaneous shear response of the material. Thus, the reduced constitutive equation
is considered, which includes the fabric response functions φ4, φ5, φ6 and φ12 and
the associated tensor generators. Accordingly, the reduced orthotropic flow law has
the following form (Staroszczyk and Morland 1999, 2000a):

S =
3∑

r=1

φr+3
(
M(r)D + DM(r)

) + φ12 (BD + DB) . (7.24)

An equivalent form is obtained by equating the deviatoric parts of both sides of
(7.24), which yields

S =
3∑

r=1

φr+3
[
M(r)D + DM(r) − 2

3 tr (M
(r)D)I

] +

+ φ12
[
BD + DB − 2

3 tr (BD)I
]
. (7.25)

The invariants appearing in the latter equation are: tr (M(r)D) = Ir (r = 1, 2, 3),
and tr (BD) = I13 + I14 + I15, see definitions (7.16).
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The flow law (7.25) determines the (i j) component (i �= j) of the deviatoric stress
tensor S as

Si j = [
φi+3 + φ j+3 + (bi + b j )φ12

]
Di j (i �= j), (7.26)

which defines an instantaneous viscosityμi j for shearing in the xi direction on a glide
plane normal to the x j direction by

μi j = Si j
2Di j

= 1
2

[
φi+3 + φ j+3 + (bi + b j )φ12

]
(i �= j). (7.27)

Similarly, for unconfined compressions carried out along the principal stretch axes
xi (i = 1, 2, 3), with the current deformation tensor B and the three structure tensors
M(r) given by (7.18) and (7.19), respectively, the axial components of the deviatoric
stress tensor are expressed by

Sii = 1
3

[
4φi+3 + φ j+3 + φk+3 + (4bi + b j + bk)φ12

]
Dii , (7.28)

where i, j, k are distinct permutations of 1, 2, 3 and no summation over repeated
indices is invoked. Equation (7.28) defines an instantaneous axial viscosity for com-
pression in the xi direction by

μi i = Sii
2Dii

= 1
6

[
4φi+3 + φ j+3 + φk+3 + (4bi + b j + bk)φ12

]
. (7.29)

The shear and axial viscosity relations (7.27) and (7.29), due to their symmetry
properties (the viscosities cannot change when the indices 1, 2, 3 are interchanged)
can be used to infer the properties of the response coefficients φ4, φ5, φ6 and φ12, and
to determine on which scalar invariants Ik defined by (7.16) the viscous response of
the material depends, and on which invariants it does not depend (so that such invari-
ants can be discarded). Further information on the properties of the four response
functions and the scalars Ik involved in the constitutive description can be obtained
by requiring that the orthotropic flow law (7.25) reduces to the law for an isotropic
viscous fluid when the ice is undeformed and there is no anisotropic fabric (that is,
when F = I , or B = I). Hence, it is assumed that for F = I , when λ1 = λ2 = λ3,
the viscous response of ice obeys theReiner-Rivlin fluid flow law defined by (Spencer
1980):

S = Φ1D + Φ2
[
D2 − 1

3 tr (D
2)I

]
, (7.30)

where Φ1 and Φ2 are, in general, the functions of the density �, temperature T , and
the three strain-rate invariants: tr D, tr D2 and det D. The conventional approach in
glaciology is that Φ2 = 0 and Φ1 is independent of det D = I18. Since, due to ice
incompressibility, tr D = 0, the function Φ1 depends only on one invariant, tr D2 =
I7 + I8 + I9 (and on T aswell, but the effects of temperature are ignored at this stage).

The detailed analysis conducted by Staroszczyk andMorland (2000a) showed that
the response function φ12 can depend only on the combinations of two invariants
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I20 =
3∑

r=1

Ir+3 = tr B, I21 =
3∑

r=1

Ir+9 = tr B2, (7.31)

while the functions φ4, φ5 and φ6 can have common dependence on both I20 and
I21, as well as dependence on I4 = b1, I5 = b2 and I6 = b3, respectively. Moreover,
it was found that, in the initially isotropic state with B = I , the following relations
hold

φ4 = φ5 = φ6 and φ4 + φ12 = 1
2Φ1, (7.32)

with the invariants (7.16) becoming, at B = I ,

Ir = trM(r)D, Ir+3 = trM(r) = 1, Ir+6 = trM(r)D2,

Ir+9 = trM(r) = 1, Ir+12 = Ir (r = 1, 2, 3),

I16 = tr D2, I17 = tr D = 0, I18 = det D.

(7.33)

Since for an isotropic material the response coefficients should be symmetric func-
tions of the invariants (meaning that they do not change their values when the indices
r = 1, 2, 3 are permuted), (7.33) implies, at B = I , the dependence of the response
functions on the invariants

I22 = I1 + I2 + I3 = 0,

I24 = I13 + I14 + I15 = 0,

I23 = I7 + I8 + I9 = tr D2,

I16 = tr D2.
(7.34)

Thus, the four response coefficients φ4, φ5, φ6 and φ12 can involve three invariants
depending on the strain-rate D, namely I16 = tr BD2, I23 = tr D2 and I24 = tr BD,
since I22 = tr D ≡ 0.

In spite of the restrictions imposed by relations (7.31)–(7.34) on the response
functions and their scalar arguments, the constitutivemodel (7.25) is still too complex
to allow correlationwith available empirical data. For this reason, themodel is further
simplified by assuming that the response functions depend on only four invariants
of the deformation tensor B: I4 = b1, I5 = b2, I6 = b3 and I20 = tr B (that is, the
invariant I21 = tr B2 is discarded), which constitutes aminimum set of invariants that
the theory has to incorporate in order to satisfy the directional viscosity relations.
Yet another simplification is to assume a separable dependence which factors out the
invariants depending only on the deformation B and retains the common dependence
on the strain-rate D; hence, the invariants I16 and I24 involving the products of B and
D are omitted. Accordingly, newmaterial response functions f and g are introduced,
by means of which the coefficients φ4, φ5, φ6 and φ12 are expressed in the forms

φr+3 (Ir+3, I20, I23) = μ0 (tr D2, T ) f (br , tr B)

φ12 (Ir+3, I20, I23) = μ0 (tr D2, T ) g(br , tr B)
(r = 1, 2, 3), (7.35)
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where μ0 (tr D2, T ) is the viscosity of isotropic polycrystalline ice at given strain-
rate invariant tr D2 and temperature T . Since the functions (7.35) must give the
isotropic viscous fluid law (7.30) with Φ2 = 0 when B = I , so b1 = b2 = b3 = 1
and tr B = 3, one finds from the flow law (7.25) that

μ0 = 1
2 �1 and f (1, 3) + g(1, 3) = 1. (7.36)

We focus here on a model in which the response functions f and g depend on
only one invariant each, and adopt

f = f (br ), g = g(tr B), f (1) + g(3) = 1. (7.37)

With relations (7.35) and (7.37), the instantaneous directional viscosities (7.27)
become

μi j = 1
2μ0

[
f (bi ) + f (b j ) + (bi + b j ) g(tr B)

]
, (7.38)

and since these viscosities must remain bounded for any axial stretch br increasing
indefinitely, we rewrite g and the normalization condition (7.37)3 as

g(K ) = K−1 G(K ), f (1) + 1
3 G(3) = 1, (7.39)

where the new function G(K ) is bounded, and K is the strain invariant defined by

K = tr B = b1 + b2 + b3 ≥ 3. (7.40)

Accordingly, the relations for the instantaneous shear viscosities (7.27), or (7.38),
and for the instantaneous axial viscosities (7.29), become

μi j = 1
2μ0

[
f (bi ) + f (b j ) + (bi + b j ) K

−1G(K )
]
, (7.41)

μi i = 1
6μ0

[
4 f (bi ) + f (b j ) + f (bk) + (4bi + b j + bk) K

−1G(K )
]
, (7.42)

where i �= j in (7.41), and i �= j , i �= k and j �= k in (7.42). Finally, on account of
relations (7.35), (7.37) and (7.39), the orthotropic constitutive equation (7.25) takes
the form

S = μ0

{ 3∑

r=1

f (br )
[
M(r)D + DM(r) − 2

3 tr (M(r)D)I
] +

+ K−1G(K )
[
BD + DB − 2

3 tr (BD)I
] }

. (7.43)

As already noted, the isotropic ice viscosity μ0 is a function of temperature and
current strain-rate, or alternatively stress. The dependence on temperature can be
described by relations (3.18)–(3.20) on p. 40, derived by (Morland 1993, 2001) by
correlation with experimental data. In this work, the variation ofμ0 with either strain-
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rate or stress is described in terms of the respective invariants, tr D or tr S, being the
arguments of the viscosity scaling functions φ(I ) or ψ(J ) defined below. Hence,
the relations describing the strain-rate and stress dependencies of the isotropic ice
viscosity are

μ0(T, I ) = σ0

2D0
a−1(T )φ(I ), (7.44)

μ0(T, J ) = σ0

2D0
a−1(T )ψ−1(J ), (7.45)

where the temperature scaling factor a(T ) is given by (3.18), and the constants
σ0 = 0.1 MPa and D0 = 1 yr−1 = 3.17 × 10−8 s −1 are the normalizing stress and
strain-rate units reflecting typical magnitudes of these quantities in natural polar ice
caps. The two invariants I and J are defined by

I = 1
2 tr (D/D0)

2, J = 1
2 tr (S/σ0)

2, (7.46)

with the relations

φ(I )ψ(J ) = 1, J = Iφ2(I ), I = Jψ2(J ). (7.47)

Specific forms of the scaling factors can be constructed by correlations with the
observed creep behaviour of polar ice. One of possible forms was proposed by Smith
and Morland (1981) as

ψ(J ) = 0.3336 + 0.32J + 0.02963J 2, (7.48)

with the corresponding function φ(I ) determined by numerical inversion of the first
relation (7.47). Alternatively, an algebraic representation proposed by Morland and
Staroszczyk (2003b) can be used:

φ(I ) =
3∑

r=1

kr
(1 + I ) lr

, (7.49)

where k1 = 1.4070, k2 = 0.8562, k3 = 0.7100, l1 = 0.3679, l2 = 3.2393 and l3 =
21.4030. Figure 7.2 illustrates the functionsφ(I ) (calculated from (7.49)) andψ−1(J )

(calculated from (7.48)) over the range 0 ≤ J ≤ 25 (corresponding to shear stresses
up to 0.5 MPa).
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Fig. 7.2 Viscosity scaling functions φ(I ) and ψ−1(J )

7.3.1 Simple Flow Simulations

The reduced orthotropic constitutive equation (7.43) describes the viscous behaviour
of ice by means of two fabric response functions f and G, the arguments of which
are the current deformation measures: the principal stretches br (r = 1, 2, 3) in f
and their sum K = b1 + b2 + b3 in G. In order to construct these two functions and
correlate them with available empirical data, a methodology similar to that already
applied in Chap. 6 is applied, in which the predictions of the constitutive models
for viscous flows in simple configurations were correlated with the limit viscosities
measured in laboratory experiments at very large strains, when the anisotropy of ice
is fully developed. Accordingly, the unconfined uniaxial compression and simple
shear flows illustrated in Fig. 6.4 on p. 185 are considered. For simplicity, the effects
of the strain-rate/stress on the ice viscosity magnitude are here neglected.

First let us investigate the unconfined uniaxial compression flow of an initially
isotropic ice sample. Referring to relations (7.17), assume that the axial compression
is carried out along the x3-axis. In this configuration, the principal axial stretch λ3 ≤
1, and the lateral stretchesλ1 = λ2 = λ

−1/2
3 ≥ 1. The left Cauchy-Green deformation

tensor has now the components

B =
⎛

⎝
λ2
1 0 0
0 λ2

1 0
0 0 λ−4

1

⎞

⎠ , (7.50)

and the three structure tensors M(r) are defined by (7.19). The strain-rate and devi-
atoric stress tensors have only diagonal components given by
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D =
⎛

⎝
D11 0 0
0 D11 0
0 0 −2D11

⎞

⎠ , S =
⎛

⎝
S11 0 0
0 S11 0
0 0 −2S11

⎞

⎠ , (7.51)

and the invariants entering the flow law (7.43) are

tr (M(1)D) = tr (M(2)D) = D11,

tr (BD) = 2D11(b1 − b−2
1 ),

tr (M(3)D) = −2D11,

K = tr B = 2b1 + b−2
1 .

(7.52)

With the above definitions, the orthotropic constitutive law (7.43) gives the following
viscous response of ice under uniaxial compression:

S33
2μ0D33

= 1

3

[
f (b1) + 2 f (b−2

1 ) + G(K )

K
(b1 + 2b−2

1 )

]
= μ33

μ0
. (7.53)

In (7.53), μ33/μ0 defines the ratio of the current fabric induced axial viscosity to the
isotropic ice viscosity.

Next let us consider a simple shear flow configuration. For more generality, it is
assumed that the material is not isotropic at the beginning of shear deformation; that
is, it has already developed an anisotropic fabric, the strength ofwhich is described by
the principal stretchesλ3 = λ−1

1 ,λ2 = 1 (plane flowconditions). Nowapply shearing
in the plane Ox1x3 at a constant shear strain-rate D13 > 0. The deformation field is
then described by

x1 = λ1X1 + κX3, x2 = X2, x3 = λ−1
1 X3, (7.54)

where κ is a shear strain in the plane Ox1x3, with κ = 0 at the start of shearing. Note
that λ1 is here a parameter that describes the fabric prior to shearing. As the shear
deformation develops, the principal stretch directions rotate in the plane Ox1x3, and
hence their magnitudes also change. The deformation and strain-rate fields are now
expressed by the tensors

B =
⎛

⎝
λ2
1 + κ2 0 λ−1

1 κ
0 1 0

λ−1
1 κ 0 λ−2

1

⎞

⎠ , D =
⎛

⎝
0 0 1

2 γ̇
0 0 0
1
2 γ̇ 0 0

⎞

⎠ , γ̇ = λ1κ̇. (7.55)

The principal stretch squares bi (i = 1, 2, 3), the eigenvalues of B, see relations
(7.10), are given by

b2 = 1, b3 = b−1
1 , 2b1 = λ2

1 + λ−2
1 + κ2 +

√(
λ2
1 + λ−2

1 + κ2
)2 − 4 , (7.56)
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and the associated principal unit vectors e(r) are defined by

e(2) = (0, 1, 0)T , e(s)
2 = 0, λ−1

1 κ e(s)
1 + (

λ−2
1 − bs

)
e(s)
3 = 0,

[
e(s)
1

]2 +
[
e(s)
3

]2 = 1 (s = 1, 3).
(7.57)

With the vector components given by (7.57), the structure tensors are expressed by

M(2) =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , M(s) =
⎛

⎝
e(s)
1 e(s)

1 0 e(s)
1 e(s)

3
0 0 0

e(s)
1 e(s)

3 0 e(s)
3 e(s)

3

⎞

⎠ (s = 1, 3), (7.58)

and the invariants entering the constitutive law (7.43) are given by

tr (M(2)D) = 0,

tr (BD) = γ̇ λ−1
1 κ,

tr (M(s)D) = γ̇ e(s)
1 e(s)

3 (s = 1, 3),

K = tr B = b1 + 1 + b−1
1 .

(7.59)

In view of (7.55), (7.58) and (7.59), the orthotropic flow law (7.43) yields the fol-
lowing expression for the shear stress component S13:

S13
2μ0D13

= 1

2

[
f (b1) + f (b−1

1 ) + G(K )

K
(λ2

1 + λ−2
1 + κ2)

]
= μ13

μ0
, (7.60)

which describes the variation of the shear viscosity with shear strain κ.

7.3.2 Material Response Functions

The viscosity ratios given by (7.53) and (7.60) describe the evolution of the axial and
shear responses of anisotropic fabric with increasing strains, being the arguments of
the material response functions f and G. At this stage, the specific properties of the
latter functions are unknown. Ideally, the properties of f and G should be inferred
from experimental results covering the whole range of axial and shear deformations
that an ice sample undergoes as it develops anisotropy from the initially isotropic
state. Unfortunately, it seems that the task of achieving the full correlation between
the observed polar ice behaviour and the constitutivemodel functions and parameters
is hardly viable yet, in spite of the considerable amount of experimental work already
done (Jacka 1984; Jacka andMaccagnan 1984; Li et al. 1996; Treverrow et al. 2012).
For this reason, it is attempted here to construct the forms of fabric response functions
which fulfil a limited number of conditions derived analytically, with the aim to
capture in the proposed model the most important properties of polar ice creep.
Such an approach, unavoidably, requires further simplifications to be introduced,
thus restricting the theory, but it is believed that the model will still retain sufficient
flexibility to enable future correlations with detailed experimental data.
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The minimum requirement that a constitutive model for anisotropic polar ice
should satisfy is its capability of properly predicting the viscousmaterial behaviour of
ice at very large deformations. Such limit behaviour of ice is described quantitatively
in terms of the axial and shear enhancement factors Ea and Es , respectively (Budd
and Jacka 1989), which were already used in the micro-mechanical constitutive
models discussed in Sect. 6.3 to determine the ice crystal microscopic rheological
parameters.Accordingly, for the indefinite axial stretchλ1 → ∞ (andhenceλ3 → 0)
in uniaxial compression, implying b1 → ∞ and K ∼ 2b1, the viscosity relation
(7.53) yields

μ33

μ0
→ 2

3
f (0) + 1

3
f (∞) + 1

6
G(∞) = E−1

a . (7.61)

Similarly, in the case of the simple shear viscosity ratio (7.60), as κ → ∞ with λ1

being finite, then b1 ∼ κ2 and K ∼ κ2, and further, e(1) → (1, 0, 0)T and e(3) →
(0, 0, 1)T . This implies that

μ13

μ0
→ 1

2
f (0) + 1

2
f (∞) + 1

2
G(∞) = E−1

s . (7.62)

Equations (7.61) and (7.62) relate the three limit values f (0), f (∞) andG(∞) of
the response functions entering the orthotropic flow law (7.43). To determine these
limit values uniquely, a third equation is needed. This additional relation is derived
by following the concept developed by Staroszczyk and Morland (2000a). Based
on this concept, a set of equalities and inequalities connecting the directional shear
viscosities μi j (i, j = 1, 2, 3, i �= j) given by (7.41) has been formulated. To present
this concept, let us consider the principal stretch plane Oxi x j , with the principal
stretchesλi andλ j describing the deformations from the initially isotropic statewhen
λi = λ j = 1, see Fig. 7.3. The figure illustrates the rotations of the diagonals of an
initially unit square when λ j < λi and αi j < π/2, where tan(αi j/2) = λ j/λi . It is
evident that each intersection line of any set of symmetric glide planes with the plane
Oxi x j undergoes rotation towards the Oxi axis which increases as αi j decreases;

Fig. 7.3 Principal stretches
λi and λ j in the principal
stretch plane Oxi x j
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that is, there is increasing alignment of the crystal c-axes towards the direction of
a smaller principal stretch as it decreases relative to the other stretches. Thus, the
fluidity μ−1

i j increases as αi j decreases, or equivalently, the viscosity μi j increases
as the angle αi j increases; that is, as the ratio λ j/λi increases. In other words, the
smaller a given principal stretch is compared to the other two stretches, the stronger is
the alignment of c-axes towards the direction of this stretch and, therefore, the easier
is the crystal basal gliding on the plane normal to this principal stretch axis (that is,
the smaller is the corresponding shear viscosity). For any ordering of stretches λi ,
say λ1 ≥ λ2 ≥ λ3, there are six distinct sets of relative values of λi , and for each of
them corresponding relations order the instantaneous directional shear viscosities
μ12 , μ13 and μ23 in the coordinate frame of the principal stretch axes λi :

λ1 = λ2 = λ3 = 1 : μi j = μ0 (i, j = 1, 2, 3) , (7.63)

λ1 = λ2 > 1 > λ3 : 0 < μ13 = μ23 < μ12 , (7.64)

λ1 > λ2 > 1 > λ3 : 0 < μ13 < μ23 < μ12 , (7.65)

λ1 > λ2 = 1 > λ3 : 0 < μ13 < μ23 = μ12 , (7.66)

λ1 > 1 > λ2 > λ3 : 0 < μ13 < μ12 < μ23 , (7.67)

λ1 > 1 > λ2 = λ3 : 0 < μ13 = μ12 < μ23 . (7.68)

Obviously, due to the identities bi = λ2
i (i = 1, 2, 3), the above viscosity equalities

and inequalities also apply for the orderings b1 ≥ b2 ≥ b3. Relations (7.63)–(7.68)
can be used to assess the validity of the material responses predicted by the consti-
tutive model for particular choices of the fabric response functions f (br ) and G(K )

(Staroszczyk and Morland 2000a).
Now, by employing relation (7.66) corresponding to the plane flow, in which case

λ2 = b2 = 1, and hence b3 = b−1
1 and K = b1 + 1 + b−1

1 , it is possible to relate
G(K ) to f (br ) (r = 1, 2, 3) explicitly by

G(K ) = − K

b1 − b−1
1

[
f (b1) − f (b−1

1 )
]
, K ≥ 3, (7.69)

where
2b1 = K − 1 +

√
(K − 1)2 − 4 . (7.70)

The limit of (7.69) as b1 → 1, and hence K → 3, combined with the normalization
relation (7.39)2, yields

f (1) − f ′(1) = 1, (7.71)

which is an additional restriction on the function f (br ) at br = 1. Furthermore, the
limit of (7.69) as b1 → ∞, when K ∼ b1, gives the relation

f (0) − f (∞) − G(∞) = 0. (7.72)
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The system of three linear equations (7.61), (7.62) and (7.72) for f (0), f (∞) and
G(∞) has the solutions

f (0) = E−1
s , f (∞) = 6E−1

a − 5E−1
s , G(∞) = 6 (E−1

s − E−1
a ), (7.73)

which, together with relations (7.71) and (7.39)2, with the latter determining the limit
value G(3), define the general properties of the fabric response functions f (br ) and
G(K ) and, in particular, ensure that the constitutive model results agree with the
observed limit viscosities defined by the axial and shear enhancement factors Ea and
Es . For the values of Ea and Es pertinent to cold and warm ice (see p. 184), the limit
values of the response functions f and G defined by (7.73) are given, respectively,
by

Ea = 1
3 , Es = 5 : f (0) = 1

5 , f (∞) = 17, G(∞) = − 84
5 , (7.74)

Ea = 3, Es = 8 : f (0) = 1
8 , f (∞) = 11

8 , G(∞) = − 5
4 . (7.75)

The following forms of monotonic increasing response functions f (br ) were
adopted (Staroszczyk and Morland 1999; Staroszczyk 2004) to investigate the creep
behaviour of ice in uniaxial compression and simple shear configurations:

f (br ) = f (∞) − [ f (∞) − f (0)] exp(−αbmr ), α > 0, m > 0, (7.76)

f (br ) = f (0) + [ f (∞) − f (0)] tanh(αbmr ), α > 0, m > 0, (7.77)

f (br ) = f (∞) − [ f (∞) − f (0)]
α

α + bm
, α > 0, m > 0, (7.78)

where m is a free parameter, and α is determined by the restriction (7.71). The
forms of the other response function, G(K ), associated with f (br ), are prescribed
by relations (7.69) and (7.70). Plots of the chosen fabric response functions f (br )
for cold ice (for warm ice they are of similar shapes) are presented in Fig. 7.4.
The curves labelled (1) and (2) correspond to the function (7.76) with m = 1.5
and m = 2, respectively, the curves labelled (3) and (4) correspond to the function
(7.77) with m = 1 and m = 1.5, respectively, and the label (5) indicates the curve
corresponding to the function (7.78) withm = 2. The same labelling is applied in the
plots illustrating the viscous response of ice to compression and simple shear in the
next Sect. 7.3.3. The above particular values of the free parameter m in (7.76) and
(7.77) were used in numerical simulations, since they provide good correlation with
themicro-macroscopic orthotropicmodel developed byGagliardini andMeyssonnier
(1999), as demonstrated by Staroszczyk and Gagliardini (1999). The shapes of the
response functions plotted in Fig. 7.4 are also consistent with those predicted by
Morland and Staroszczyk (2009) by analysing the mechanism of the crystal easy
glide planes rotation in polycrystalline ice without assuming any particular form of
a constitutive law.
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Fig. 7.4 Adopted forms of
the response function f (br )
for cold ice
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7.3.3 Model Illustrations

The orthotropic constitutive model defined by (7.43), with the response functions
given by (7.76)–(7.78) and depicted in Fig. 7.4, was used to simulate the viscous
behaviour of ice in unconfined uniaxial compression and simple shear flows. The
results of simulations carried out for cold ice, described by the enhancement factors
and limit values of the response functions given by (7.74), are presented in Figs.
7.5, 7.6 and 7.7. The viscous response of ice to uniaxial compression is illustrated in
Fig. 7.5, showing the evolution of the normalized axial viscosity μ33/μ0, described
by Eq. (7.53), with increasing lateral stretch λ1. One can see that the functions (7.76)
and (7.77), the solid and dashed lines in the figure, predict a monotonic increase in
the axial viscosity with increasing axial deformation, while the function (7.78), the
dash-dotted line, yields an initial softening of ice. Such ice softening effects are also
predicted by the micro-mechanical models discussed in Chap. 6, see, for example,
Fig. 6.7 on p. 188.

The response of cold ice to simple shearing, described by (7.60), is illustrated in
Figs. 7.6 and 7.7, showing the evolution of the dimensionless shear viscosity μ13/μ0

with increasing shear strain κ. Fig. 7.6 displays, for different response functions, the
results obtained for shearing started from an initially isotropic state. It is seen that,
again, the functions (7.76) and (7.77) yield creep responses which are qualitatively
different from the response given by (7.78). While the latter function (dash-dotted
line) predicts monotonic softening of the material from the isotropic ice viscosity
to the limit viscosity determined by the reciprocal of the shear enhancement factor
Es , the former two functions give responses in which ice initially hardens, with
the maximum shear viscosity occurring at strains κ ∼ 1, followed by the stage of
progressive softening of the material until the limit shear viscosity 1/Es = 0.2 is
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Fig. 7.5 Evolution of the
normalized axial viscosity
μ33/μ0 with the lateral
stretch λ1 in uniaxial
compression for different
response functions f (br )
(cold ice)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Lateral stretch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 a
xi

al
 v

is
co

si
ty

(5)
(4)

(3)

(1)

(2)

Fig. 7.6 Evolution of the
normalized shear viscosity
μ13/μ0 with the strain κ in
simple shear started from an
isotropic state (λ3 = 1), for
different response functions
f (br ) (cold ice)
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reached. Recall that themicro-mechanical models predict a very similar behaviour of
ice, see the plot ofμ13 in Fig. 6.10 on p. 193. The predictions of the phenomenological
orthotropic flow law are also consistent with the results of micro-macroscopic model
(Staroszczyk and Gagliardini 1999).

Corresponding to Fig. 7.6 are the plots in Fig. 7.7, displaying the behaviour of
ice in simple shearing started from different anisotropic states induced in the plane
flow λ2 = 1 by performing the initial pre-compression along the x3-axis defined by
the stretch λ3 ≤ 1. Presented in the figure are the results obtained for the response
function (7.76) with the parameter m = 1.5, demonstrating the effect of the initial
anisotropy on the shear response of ice.
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Fig. 7.7 Evolution of the
normalized shear viscosity
μ13/μ0 with the strain κ in
simple shear started from
different anisotropic states
defined by the initial stretch
λ3 (cold ice)
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Fig. 7.8 Evolution of the
normalized axial viscosity
μ33/μ0 with the lateral
stretch λ1 in uniaxial
compression for different
response functions f (br )
(warm ice)
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The results of simulations for warm ice, described by the enhancement factors
and limit values of the response functions given by (7.75), are presented in Figs. 7.8
and 7.9. The plots illustrate the evolution of the dimensionless axial and shear vis-
cosities with strains for the response functions plotted in Fig. 7.4.We observe that for
warm ice, contrary to cold ice, the orthotropic constitutive model (7.43) predicts, for
both uniaxial compression and simple shear deformations, progressive weakening of
the ice creep response over thewhole range of strains, with the normalized viscosities
decreasing monotonically from unity in the initial isotropic state to the limit values,
defined by enhancement factors Ea and Es , for fully developed anisotropic fabrics.
Such monotonic softening of warm ice, predicted by the model, is in good qualitative
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Fig. 7.9 Evolution of the
normalized shear viscosity
μ13/μ0 with the strain κ in
simple shear started from an
isotropic state (λ3 = 1) for
different response functions
f (br ) (warm ice)
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agreement with the experimental results reported by Jacka and Maccagnan (1984),
Budd and Jacka (1989) and Treverrow et al. (2012).

7.4 Inverse Orthotropic Flow Law

In Sects. 7.2 and 7.3 the constitutive equations for polar ice treated as an orthotropic
material are formulated, inwhich deviatoric stress is expressed in terms of strain-rate,
strain and three structure tensors based on the current principal deformation axes.
Such a stress–strain-rate form is the most convenient one for use in the momentum
balance equations. However, a more common approach in theoretical glaciology is
to express strain-rate in terms of deviatoric stress. For this reason, an inverse (that is,
strain-rate–stress) form of the orthotropic flow law is discussed in this section, as it
is possible that such a form will reveal different ice creep response features than the
direct stress–strain-rate prescription, which can help improve the constitutive model
correlations with experimental data.

The method of derivation of the strain-rate–stress form of the orthotropic law
(Staroszczyk 2001) is analogous to that described in Sects. 7.2 and 7.3. Again, the
constitutive model is obtained from the general, frame-indifferent tensor represen-
tation for orthotropic materials, which is subsequently reduced to a form which
retains only those tensor generators that can be detected by measuring directional
viscosities in simple shear tests conducted in different shear planes. The reduced
constitutive equation involves again two material response functions with depen-
dence on the principal stretches and an invariant measure of current deformation.
These response functions are constructed by matching the model predictions with
the observed behaviour of ice at large strains. The model is then used to illustrate
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the evolution of the creep response of initially isotropic ice during sustained uniaxial
compression and simple shearing.

7.4.1 General Strain-Rate–Stress Formulation

As earlier in Sect. 7.2, the orthotropic constitutive law relating the strain-rate tensor
D to the deviatoric Cauchy stress tensor S and the left Cauchy-Green deformation
tensor B is derived from the general frame-indifferent representation given by Eqs.
(B.10) and (B.11) (on p. 325) in Appendix B. Hence, we have

D =
3∑

r=1

[
φrM(r) + φr+3

(
M(r)S + SM(r)

) + φr+6
(
M(r)B + BM(r)

)] +

+ φ10S2 + φ11B2 + φ12 (BS + SB) , (7.79)

where the structure tensors M(r) (r = 1, 2, 3) are defined by relation (7.8)2, and
the 12 response coefficients φi (i = 1, . . . , 12) are functions of the 19 invariants Jk
(k = 1, . . . , 19) of the tensors M(r), S and B and their products:

Jr = trM(r)S, Jr+3 = trM(r)B, Jr+6 = trM(r)S2,

Jr+9 = trM(r)B2, Jr+12 = trM(r)BS (r = 1, 2, 3),

J16 = tr BS2, J17 = tr B2S, J18 = det S, J19 = det B.

(7.80)

Due to the ice incompressibility assumption, expressed by the conditions tr D = 0
and det B = det F = 1, only 11 response coefficients φi are independent, and only
18 invariants are non-trivial. It is assumed that the strain-rate D vanishes when the
deviatoric stress S vanishes. Thus, we require that the coefficients φ1, φ2, φ3, φ7, φ8,
φ9, φ11 vanish when S = O; that is, when the invariants J1, J2, J3, J7, J8, J9, J13,
J14, J15, J16, J17, J18 are all equal to zero.

In order to simplify the general orthotropic flow law (7.79), including 11 indepen-
dent response coefficients and 18 invariants as their arguments, the same approach
is followed as for the direct, stress–strain-rate formulation considered in Sect. 7.2,
which is based on the method of detection of instantaneous directional viscosities
that can be measured in a series of simple shear tests. Accordingly, the flow law
equation (7.79) is set in the reference frame, the axes of which coincide with the
principal stretch axes, so that the current deformation field is described by the axial
stretches λ1, λ2 and λ3. In this frame, after removing the stress and strain-rate, so
that the fabric defined by the current stretches is ‘frozen’, simple shearing by an
infinitesimal strain κ in the direction of, say, xi -axis on the plane normal to the x j

axis is performed. For this deformation field, defined by (7.20) on p. 225, the tensor
generators in the general flow law (7.79) have, for i �= j , the following instantaneous
(i j) components, equal to the ( j i) components:



www.manaraa.com

242 7 Phenomenological Constitutive Models for Polar Ice

(
M(r)S + SM(r)

)
i j

=
{
Si j (r = i or r = j)

0 (r �= i and r �= j)
, (7.81)

(
M(r)B + BM(r)

)
i j

= 0,
(
S2)

i j
= 0,

(
B2

)
i j

= 0, (7.82)

(BS + SB)i j = (bi + b j )Si j . (7.83)

There are non-zero diagonal components of the instantaneous strain-rate D, but these
are of no interest at this point, since they cannot be detected in the simple shear tests.
It is clear from the above relations that the only tensor generatorswhich give non-zero
off-diagonal components of the strain-rate tensor D are those appearing in (7.81) and
(7.83). This implies that only four response coefficients: φ4, φ5, φ6 and φ12 can be
detected by instantaneous shear response of the orthotropic material. This is the same
result as that deduced for the stress–strain-rate formulation discussed in Sect. 7.2.
Accordingly, only the four above-indicated response coefficients are retained for
further considerations.

7.4.2 Reduced Flow Law

Since both tensors D and S entering the direct and the inverse formulations of the
orthotropic constitutive law are traceless, and both formulations contain the same
four response functions φ4, φ5, φ6 and φ12, the process of the derivation of the
reduced form of the inverse law essentially repeats, with small exceptions, the main
steps described previously in Sect. 7.3 devoted to the direct law formulation. For this
reason, most of the details involved in the derivation of the inverse (strain-rate–stress)
form are be omitted here (these details can be found in the papers by Staroszczyk
2001, 2004).

Hence, the following form of the reduced orthotropic constitutive relation is con-
sidered:

D =
3∑

r=1

φr+3
[
M(r)S + SM(r) − 2

3 tr (M
(r)S)I

] +

+ φ12
[
BS + SB − 2

3 tr (BS)I
]
, (7.84)

where the included scalars are expressed in terms of the invariants (7.80) by
tr (M(r)S) = Jr (r = 1, 2, 3) and tr (BS) = J13 + J14 + J15. By assuming again a
separable dependence which factors out the invariants depending only on the defor-
mation B and retains a common dependence on the invariants involving the stress
S, it can be concluded that the four fabric response functions have the forms

φr+3 (br , tr B, tr S2) = 1
4 η0 (tr S2) f̂ (br )

φ12 (br , tr B, tr S2) = 1
4 η0 (tr S2) ĝ(tr B)

(r = 1, 2, 3), (7.85)
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where f̂ (br ) and ĝ(tr B) are single-valued response functions, and η0 (tr S2) is the
fluidity of isotropic ice at a givenmagnitude of the deviatoric stress invariant S2. The
factor 1

4 in (7.85) is introduced to yield the standard form of the linearly viscous fluid
flow law S = 2μ0D (μ0 = 1/η0) for isotropic ice (for which B = I and tr B = 3).
The functions f̂ and ĝ are normalized by the relation

f̂ (1) + ĝ(3) = 1, (7.86)

analogous to (7.37)3. In view of (7.85), the instantaneous shear fluidity relation is
defined by

ηi j = 1
2 η0

[
f̂ (bi ) + f̂ (b j ) + (bi + b j ) ĝ(K )

]
(i �= j), (7.87)

where η0 is the isotropic ice fluidity (reciprocal of the viscosity μ0). Since ηi j must
be bounded for the axial stretches br → ∞, we rewrite the function ĝ and the nor-
malization condition (7.86) as

ĝ(K ) = K−1Ĝ(K ), f̂ (1) + 1
3 Ĝ(3) = 1, (7.88)

where Ĝ is bounded and K = tr B = b1 + b2 + b3. Thus, the instantaneous fluidity
relation (7.87) becomes

ηi j = 1
2 η0

[
f̂ (bi ) + f̂ (b j ) + (bi + b j ) K

−1Ĝ(K )
]
, (7.89)

and, on account of (7.85) and (7.88)1, the reduced inverse orthotropic flow law (7.84)
takes the form

D = η0

4

{ 3∑

r=1

f̂ (br )
[
M(r)S + SM(r) − 2

3 tr (M(r)S)I
] +

+ K−1Ĝ(K )
[
BS + SB − 2

3 tr (BS)I
] }

. (7.90)

Application of the reduced constitutive law (7.90) to uniaxial and simple shear
flows yields the instantaneous axial and shear viscosities as functions of current
deformations. For indefinitely large strains, these viscosity relations enable correla-
tions of the model predictions with the observed creep behaviour of ice, in a way
analogous to that already followed in Sect. 7.3. In the case of unconfined uniaxial
compression flow started from an initially isotropic state, with the deformation field
defined by relations (7.17) and the components of left Cauchy-Green deformation,
strain-rate and deviatoric stress tensors given by (7.50) and (7.51) on p. 231, the flow
law (7.90) determines the viscous response of ice under compression as
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2μ0D33

S33
= 1

3

[
f̂ (b1) + 2 f̂ (b−2

1 ) + Ĝ(K )

K
(b1 + 2b−2

1 )

]
= η33

η0
, (7.91)

where η33/η0 defines the ratio of the fabric induced axial fluidity to isotropic ice
fluidity. The limit value of this ratio for indefinitely large axial compression, when
b1 = λ2

1 → ∞ and then K ∼ 2b1, is defined by

η33

η0
→ 2

3
f̂ (0) + 1

3
f̂ (∞) + 1

6
Ĝ(∞) = Ea , (7.92)

where Ea in the axial enhancement factor.
The analysis of the simple shear flow configuration, with the deformation field

defined by relations (7.54) and the Cauchy-Green deformation and the strain-rate
tensor components given by (7.55) on p. 232, is more complex than that in the case
of the direct flow law formulation investigated in Sect. 7.3. The reason for this is
the structure of the stress tensor S, which in the simple shear flow has not only off-
diagonal non-zero components Si j (i �= j), but, due to the Poynting effect, has also
the diagonal non-vanishing components Sii . Hence, for simple shearing assumed to
occur in the Ox1x3 plane, the stress tensor has the components

S =
⎛

⎝
S11 0 S13
0 S22 0
S13 0 S33

⎞

⎠ , tr S = S11 + S22 + S33 = 0. (7.93)

With the tensor S given by (7.93), the flow law (7.90) expresses the strain-rate com-
ponent D13 in terms of the three stress components: S13, S11 and S33 (recall, that in the
direct stress–strain-rate formulation of the flow law, a single stress component S13 is
expressed in terms of only one strain-rate component D13, which makes the calcu-
lation of the instantaneous shear viscosity μ13 straightforward, see relation (7.60)).
Therefore, in order to express the shear strain-rate in terms of the corresponding
shear stress alone in the case of the strain-rate–stress formulation of the constitutive
law, all three stress components S13, S11 and S33, required to enforce simple shear
flow, must be calculated. This can be accomplished by solving the following three
equations for the three strain-rates D13, D11 and D33 in terms of the three deviatoric
stress components S13, S11 and S33 (Staroszczyk 2001):

2μ0D13 =1

2

(
S11 + S33

)
[
f̂ (b1)e

(1)
1 e(1)

3 + f̂ (b−1
1 )e(3)

1 e(3)
3 + Ĝ(K )

K
λ−1κ

]

+ 1

2
S13

[
f̂ (b1) + f̂ (b−1

1 ) + Ĝ(K )

K
(λ2

1 + λ−2
1 + κ2)

]
, (7.94)
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2μ0D11 = 1

3
S11

[
2 f̂ (b1)e

(1)
1 e(1)1 + f̂ (1) + 2 f̂ (b−1

1 )e(3)1 e(3)1 + Ĝ(K )

K
(2λ21 + 2κ2 + 1)

]

+ 1

3
S33

[
− f̂ (b1)e

(1)
3 e(1)3 + f̂ (1) − f̂ (b−1

1 )e(3)3 e(3)3 − Ĝ(K )

K
(λ−2

1 − 1)

]

+ 1

3
S13

[
f̂ (b1)e

(1)
1 e(1)3 + f̂ (b−1

1 )e(3)1 e(3)3 + Ĝ(K )

K
λ−1κ

]
, (7.95)

2μ0D33 = 1

3
S11

[
− f̂ (b1)e

(1)
1 e(1)1 + f̂ (1) − f̂ (b−1

1 )e(3)1 e(3)1 − Ĝ(K )

K
(λ21 + κ2 − 1)

]

+ 1

3
S33

[
2 f̂ (b1)e

(1)
3 e(1)3 + f̂ (1) + 2 f̂ (b−1

1 )e(3)3 e(3)3 + Ĝ(K )

K
(2λ−2

1 + 1)

]

+ 1

3
S13

[
f̂ (b1)e

(1)
1 e(1)3 + f̂ (b−1

1 )e(3)1 e(3)3 + Ĝ(K )

K
λ−1κ

]
. (7.96)

By setting to zero the axial strain-rates D11 and D33 in (7.95) and (7.96) (since in
simple shear flowall axial strain-rates are zero), the stress components S11 and S33 can
be eliminated to relate D13 in terms of only S13, and thus to provide an expression
for the instantaneous shear viscosity μ13. The resulting relation, expressed in the
form 2μ0D13/S13 = [ . . . ] = η13/η0, analogous to (7.92), describes the evolution of
the normalized shear fluidity in terms of the shear strain κ. In the limit, as κ → ∞
with λ1 finite, then b1 ∼ κ2 and K ∼ κ2, and, further, e(1) → (1, 0, 0)T and e(3) →
(0, 0, 1)T , Eq. (7.94) implies that

η13

η0
→ 1

2
f̂ (0) + 1

2
f̂ (∞) + 1

2
Ĝ(∞) = Es , (7.97)

where Es is the shear enhancement factor.
The two viscosity relations (7.92) and (7.97) express the three limit values of

the response functions f̂ (0), f̂ (∞) and Ĝ(∞) in terms of the two enhancement
factors for compression and shear. In order to derive a third relation necessary for
the unique determination of the above three limit values, the approach described in
Sect. 7.3.2 is followed, and, in particular, use is made of Eq. (7.66) on p. 235 for
the shear viscosities in the plane flow defined by λ2 = b2 = 1 and b3 = b−1

1 . Hence,
bearing in mind that μi j = η−1

i j , Eqs. (7.66) (implying μ12 = μ23) and (7.89) yield
the relation

Ĝ(K ) = − K

b1 − b−1
1

[
f̂ (b1) − f̂ (b−1

1 )
]
, K ≥ 3, (7.98)

where b1 is given in terms of K by (7.70). The limit of (7.98) as b1 → 1 and K → 3,
combined with the normalization (7.88)2, gives
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f̂ (1) − f̂ ′(1) = 1, (7.99)

which is a restriction on the function f̂ (br ) at br = 1. In turn, the limit of (7.98) as
b1 → ∞, and then K ∼ b1, provides the relation

f̂ (0) − f̂ (∞) − Ĝ(∞) = 0. (7.100)

The system of three linear equations (7.92), (7.97) and (7.100) has the solution

f̂ (0) = Es , f̂ (∞) = 6Ea − 5Es , Ĝ(∞) = 6 (Es − Ea), (7.101)

which defines the limit properties of the response coefficients f̂ and Ĝ. For the
adopted enhancement factors, Ea = 1

3 and Es = 5 for cold ice and Ea = 3 and

Es = 8 for warm ice, the limit values of the fabric response coefficients f̂ and Ĝ,
as prescribed by (7.101), are given, respectively, by

Ea = 1
3 , Es = 5 : f̂ (0) = 5, f̂ (∞) = −23, Ĝ(∞) = 28, (7.102)

Ea = 3, Es = 8 : f̂ (0) = 8, f̂ (∞) = −22, Ĝ(∞) = 30. (7.103)

It can be noted that f̂ (∞) < f̂ (0) for both types of ice, in contrast to the direct model
for which f (∞) > f (0), see definitions (7.74) and (7.75) on p. 236. Therefore, for
illustration purposes, the following monotonic decreasing response functions f̂ , of
the forms analogous to those previously used for the direct model, are adopted:

f̂ (br ) = f̂ (∞) − [ f̂ (∞) − f̂ (0)] exp(−αbmr ), α > 0, m > 0, (7.104)

f̂ (br ) = f̂ (0) + [ f̂ (∞) − f̂ (0)] tanh(αbmr ), α > 0, m > 0, (7.105)

f̂ (br ) = f̂ (∞) − [ f̂ (∞) − f̂ (0)] α

α + bm
, α > 0, m > 0, (7.106)

where m is a free parameter, and α is determined by (7.99). The other response
function, Ĝ(K ), is related to f̂ (br ) by (7.98).

7.4.3 Simple Flow Simulations

The creep behaviour of cold ice predicted by the inverse orthotropic constitutive
model (7.90), with the response coefficients defined by Eqs. (7.104)–(7.106), is illus-
trated in Figs. 7.10 and 7.11. The response of ice to uniaxial compression, described
by (7.91), is presented in Fig. 7.10, showing the evolution of the normalized axial
viscosity μ33/μ0 = η0/η33 with increasing lateral stretch λ1 for different forms of
the response functions. The curves plotted in the figure have been obtained for the
response function (7.104) withm = 1 andm = 2, the labels (1) and (2), respectively,
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Fig. 7.10 Evolution of the
normalized axial viscosity
μ33/μ0 with the lateral
stretch λ1 in uniaxial
compression for different
response functions f̂ (br )
(cold ice)
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the function (7.105) withm = 2, the label (3), and the function (7.106) withm = 1.5
and m = 2, the labels (4) and (5), respectively. It is seen that, with exception of the
response function represented by the curve (1), all the functions predict qualitatively
similar behaviour of ice. By comparing the results shown in Fig. 7.10 with those in
Fig. 7.5 one can note two features. First, the inverse flow law predicts initial soften-
ing of cold ice under compression for all adopted forms of the response functions,
whereas the direct formulation yields such a behaviour only for the function of the
type (7.106). And second, the limit axial viscosities are now reached at significantly
lower rates than in the case of the stress–strain-rate prescription.

The viscous response of cold ice to simple shearing started from an initially
isotropic state (λ1 = λ3 = 1), described by Eqs. (7.94)–(7.96), is illustrated in
Fig. 7.11. The plots show the variation of the dimensionless shear viscosity μ13/μ0

with the shear strain κ for the response functions (7.104)–(7.106); the same labelling
as in the previous figure applies. Contrary to the corresponding results given by the
direct constitutive model, see Fig. 7.6, which predicts the initial hardening of cold ice
during its shearing for the fabric response functions of the types (7.104) and (7.105),
the inverse formulation predicts monotonic decrease in the shear viscosity for all the
functions used in the simulations. It is also observed that the limit viscosities given
by the inverse model are approached at much smaller strains κ than those predicted
by the direct model simulations.

The results of the simulations carried out for warm ice are presented in Figs. 7.12
and 7.13. In these figures, the curves labelled (1) and (2) have been obtained for the
function (7.104) withm = 1 and m = 1.5, respectively, the curves (3) and (4) corre-
spond to (7.105)withm = 1 andm = 1.5, respectively, and the curve (5) corresponds
to the function (7.106) with m = 1. Comparing the evolution of the normalized
viscositieswith increasing strain in uniaxial compression (Fig. 7.12) and simple shear
(Fig. 7.13) with the corresponding results given by the stress–strain-rate formula-
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Fig. 7.11 Evolution of the
normalized shear viscosity
μ13/μ0 with the strain κ in
simple shear started from an
isotropic state (λ1 = λ3 = 1)
for different response
functions f̂ (br ) (cold ice)
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Fig. 7.12 Evolution of the
normalized axial viscosity
μ33/μ0 with the lateral
stretch λ1 in uniaxial
compression for different
response functions f̂ (br )
(warm ice)
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tion, see Figs. 7.8 and 7.9, we note that both, the inverse and the direct, constitutive
models yield qualitatively similar behaviour of warm ice, with monotonic softening
of the material with increasing deformations, irrespective of the adopted forms of
the response functions. It is also seen that for both warm and cold ice the inverse
model predicts higher rates of ice softening with increasing deformation than the
direct model considered in Sects. 7.2 and 7.3.



www.manaraa.com

7.5 Additive Forms of Constitutive Laws 249

Fig. 7.13 Evolution of the
normalized shear viscosity
μ13/μ0 with the strain κ in
simple shear started from an
isotropic state (λ3 = 1) for
different response functions
f̂ (br ) (warm ice)
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7.5 Additive Forms of Constitutive Laws

In the previous sections of this chapter two versions of the orthotropic constitutive
laws are formulated to describe the mechanism of induced anisotropy of polar ice
arising from the rotation of crystal c-axes during creep deformation of the material.
In the first version of the law, called the direct formulation, the deviatoric stress is
expressed in terms of the strain-rate, strain and three structure tensors based on the
principal stretch axes (see Sects. 7.2 and 7.3). In the analogous second version of
the flow law, called the inverse formulation, the strain-rate is expressed in terms of
the stress, strain and three structure tensors (see Sect. 7.4). In both formulations, the
constitutive equations can be expressed by similar general representations

S = H(D, B, M(r)), D = Ĥ(S, B, M(r)) (r = 1, 2, 3), (7.107)

where H and Ĥ are tensor-valued functions defining the viscous response of the
material. The above representations are of a common form which henceforth will be
called themultiplicative form of a constitutive law. This formwas successfully used in
numerical simulations tomodel polar ice sheet flows (Staroszczyk andMorland 1999,
2000b; Staroszczyk 2003). However, when the first representation in (7.107), with
a relevant extension, was applied to model the process of dynamic recrystallization
(considered further in this chapter in Sect. 7.6), a somewhat unexpected response to
continuous shearing was predicted (Staroszczyk and Morland 2001). This prompted
reformulation of the original orthotropic viscous law into an alternative additive
form, in which the material response is decomposed into isotropic and anisotropic
parts, with the latter describing the strength of macroscopic anisotropy developing in
the material due to the formation and subsequent evolution of the ice fabric from its
initially isotropic state. Thus, two alternative formulations of the flow laws, which
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seem to be conceptually simpler than the conventionally used multiplicative forms
(7.107), are now considered:

S = H I (D) + H A(D, B, M(r)), (7.108)

D = Ĥ I (S) + Ĥ A(S, B, M(r)), (7.109)

where H I and H A define, respectively, the isotropic and the additional anisotropic
response in the direct (stress–strain-rate) formulation, and Ĥ I and Ĥ A define, respec-
tively, the isotropic and anisotropic responses in the inverse (strain-rate–stress for-
mulation). The vanishing of the anisotropic parts HA and ĤA in an isotropic state
B = I requires that

H A(D, I, M(r)) = O, Ĥ A(S, I, M(r)) = O. (7.110)

The additive representations (7.108) and (7.109) are used in this section to con-
struct the orthotropic viscous flow laws by following the same method, based on the
concept of instantaneous directional shear viscosities, as that applied in the derivation
of the multiplicative laws in Sects. 7.2–7.4. Compared to the constitutive equations
developed in the preceding sections, different deformation invariants as arguments
of the response coefficients are used in the additive formulations. By making use of
one of the viscosity relations discussed in Sect. 7.3.2, an explicit algebraic relation
which connects two material response coefficients is derived, thus enabling the sim-
plification of the constitutive description to a single fabric response function. The
new constitutive laws are applied to investigate uniaxial and simple shear responses,
and it turns out that, for both stress (direct) and strain-rate (inverse) formulations,
a given shear response can be satisfied identically by relating the odd part of the
single fabric response function to the even part, or to the full, of the fabric response
function (Morland and Staroszczyk 2003a, b). Specific forms of the new response
functions are determined by correlations with complete idealized uniaxial compres-
sion and simple shear responses. These new functions are then used to illustrate the
evolution of the axial and shear viscosities with increasing deformations in simple
flow configurations.

7.5.1 Stress and Strain-Rate Formulations

A new feature, compared to the constitutive models discussed in Sects. 7.2–7.4, is
the choice of new invariant arguments for the fabric response coefficients. The new
arguments, ξr and ζ, are related to the original invariant arguments, br and K , as
follows:

ξr = br − 1/br (r = 1, 2, 3), ζ =
√

(K − 1)2 − 4, K = b1 + b2 + b3,

(7.111)
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where ξr replace br and ζ replaces K . Henceforth, omitting the subscript r for
common relations, the new invariants have the properties

ξ → −∞ as b → 0, ξ = 0 at b = 1, ξ → ∞ as b → ∞, (7.112)

and
ζ ≥ 0, ζ = 0 at K = 3, ζ ∼ K → ∞ as K → ∞. (7.113)

Without loss of generality, we adopt the ordering

ξ1 ≥ ξ2 ≥ ξ3 . (7.114)

The additive representation (7.108) for the stress–strain-rate formulation is
adopted in the form

S = 2μ0

{
D +

3∑

r=1

f̄ (ξr )
[
M(r)D + DM(r) − 2

3 tr (M(r)D)I
] +

+ ḡ(ζ)
[
BD + DB − 2

3 tr (BD)I
] }

, (7.115)

where the isotropic part of the viscous response is determined by the first term in
the braces, while the anisotropic part is defined by the second and third terms in the
braces. As before, μ0 in (7.115) is the isotropic ice viscosity, which is a function of
ice temperature and either the deviatoric stress or strain-rate invariant (see definitions
(7.44)–(7.46) in Sect. 7.3). The functions f̄ (ξr ) and ḡ(ζ) are the new fabric response
coefficients for the stress formulation, analogous to the functions f (br ) and g(K )

used in Sect. 7.3. The vanishing of the anisotropic part in the initial undeformed state
B = I yields the normalization condition

f̄ (0) + ḡ(0) = 0. (7.116)

The requirement of the bounded response as b1 → ∞, and hence both K and ζ → ∞,
implies ḡ(ζ) ∼ ζ−1 as ζ → ∞. Therefore, it is convenient to introduce an alternative
response function Ḡ(ζ) defined by

Ḡ(ζ) = ζḡ(ζ), Ḡ(ζ) ∼ ḡ(0)ζ = − f̄ (0)ζ as ζ → 0, (7.117)

where Ḡ(ζ) is finite and non-zero as ζ → ∞.
The additive form of the constitutive law for the strain-rate–stress formulation

(7.109) is, in turn, expressed by the equation
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D = 1

2μ0

{
S +

3∑

r=1

f̌ (ξr )
[
M(r)S + SM(r) − 2

3 tr (M(r)S)I
] +

+ ǧ(ζ)
[
BS + SB − 2

3 tr (BS)I
] }

. (7.118)

The functions f̌ (ξr ) and ǧ(ζ) are the new fabric response coefficients for the strain-
rate formulation. They depend on the same invariant arguments as f̄ and ḡ, respec-
tively, and are the analogues of the functions f̂ (br ) and ĝ(K ) used in Sect. 7.4. The
vanishing of the anisotropic part in the relation (7.118) in the initial isotropic state
B = I gives the condition

f̌ (0) + ǧ(0) = 0. (7.119)

Again, an alternative fabric response function Ǧ(ζ) is introduced

Ǧ(ζ) = ζǧ(ζ), Ǧ(ζ) ∼ ǧ(0)ζ = − f̌ (0)ζ as ζ → 0, (7.120)

where Ǧ(ζ) is bounded and non-zero as ζ → ∞.
In the coordinate axes x1, x2 and x3 coinciding with the current directions of

the principal stretches λ1, λ2 and λ3, the two constitutive laws (7.115) and (7.118)
prescribe the instantaneous viscous responses as

Si j = 2μ0
[
1 + f̄ (ξi ) + f̄ (ξ j ) + (bi + b j )ḡ(ζ)

]
Di j , (7.121)

2μ0Di j =
[
1 + f̌ (ξi ) + f̌ (ξ j ) + (bi + b j )ǧ(ζ)

]
Si j . (7.122)

Now, we apply again the concept of instantaneous directional shear viscosities
described in Sect. 7.2. That is, let us remove the stress and strain-rate, so that the
fabric is ‘frozen’ at given stretches λ1, λ2 and λ3, and the deformation is given
by relations (7.17) on p. 225. By performing a series of simple shear tests in the
three planes Oxi x j (i �= j), with the new deformation defined by (7.20), the above
Eqs. (7.121) and (7.122) determine the following instantaneous directional viscosi-
ties μi j = Si j/(2Di j ) (i �= j) predicted by the stress and strain-rate formulations,
respectively:

μi j = μ0
[
1 + f̄ (ξi ) + f̄ (ξ j ) + (bi + b j )ḡ(ζ)

]
, (7.123)

μi j = μ0

[
1 + f̌ (ξi ) + f̌ (ξ j ) + (bi + b j )ǧ(ζ)

]−1
, (7.124)

which are analogous to relations (7.41) and (7.89). Recall that the latter relation is
expressed in terms of the fluidities ηi j and η0 which are equal to the reciprocals of
the corresponding viscosities μi j and μ0 .

Examination of the viscosity conditions (7.63)–(7.68) formulated in Sect. 7.3.2
shows that equality (7.63) for the isotropic state defined by b1 = b2 = b3 = 1,
implying ξ1 = ξ2 = ξ3 = 0, follows immediately from both relations (7.123) and
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(7.124), provided that the respective normalization conditions (7.116) and (7.119) are
satisfied. The viscosity equalities (7.64) for b1 = b2, hence ξ1 = ξ2, and (7.68) for
b2 = b3, hence ξ2 = ξ3, also follow from both expressions (7.123) and (7.124).
Finally, the equality μ23 = μ12 in (7.66) for the plane flow, when b2 = 1, hence
b3 = 1/b1, so that ξ2 = 0, ξ3 = −ξ1 and ζ = ξ1, yields identical explicit expressions
for Ḡ(ζ) in terms of f̄ (ζ), and Ǧ(ζ) in terms of f̌ (ζ); that is,

G(ζ) = ζg(ζ) = − f (ζ) + f (−ζ) = −2 f o(ζ), ζ ≥ 0, (7.125)

where f , g and G denote either the over-bar or over-check functions, and f (ξ) has
the decomposition into even, f e, and odd, f o, parts defined by

f (ξ) = f e(ξ) + f o(ξ), (7.126)

with the relations

2 f e(ξ) = f (ξ) + f (−ξ), 2 f o(ξ) = f (ξ) − f (−ξ). (7.127)

Accordingly, in terms of the new invariant arguments, in either formulation g(ζ)

is determined explicitly in terms of f o(ξ), and each of the two additive constitutive
laws can be expressed directly in terms of a single fabric response function f (ξ). The
limit of (7.125) as b1 → 1, ζ → 0, along with the normalization conditions (7.116)
and (7.119), gives

G(0) = 0, g(0) = − f (0) = −2 f ′(0), (7.128)

which is a restriction on f (ξ) at ξ = 0. The limit of (7.125) as b1 → ∞, ζ ∼ b1 →
∞, yields in turn

G(∞) = −2 f o(∞), g(∞) = 0. (7.129)

The remaining two directional viscosity relations, (7.65) and (7.67), must be exam-
ined numerically for any specific forms of the fabric response coefficients in order
to confirm the validity of viscous responses predicted by the constitutive theory.

7.5.2 Material Response Functions

A realistic constitutive model should predict observed responses of polar ice in
any, physically feasible, flow configuration. This, however, is hardly viable at this
stage, and it seems that the matching of uniaxial and shear responses for a wide
range of strains is the most that can be achieved at present. Hence, we focus here
on the determination of the fabric response coefficients which ensure the correct
reproduction of the unconfined uniaxial and simple shear responses measured in
experiments. As earlier in Sects. 7.3 and 7.4, the starting point is the derivation of
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the limit properties of the response functions at the initially isotropic state of the
material, and at very large axial/shear strains. At the next stage, assuming certain
forms of the response functions which satisfy the above limit conditions, correlations
of the model results with complete (idealized) viscous responses to compression and
shearing will be made for the stress–strain-rate formulation, in order to demonstrate
the validity of the constitutive theory predictions.

The unconfined uniaxial compression flow field, assuming compression taking
place along the x3-axis, is defined by Eqs. (7.17)–(7.19) on p. 225. The additive flow
law (7.115) then predicts the axial viscosity relation given by the stress formulation
as

μ̃33(ξ1) = S33
2μ0D33

= 1 + 2

3
f̄ (ξ1) + 4

3
f̄ (ξ3) + 2

3
(b1 + 2b−2

1 ) ḡ(ζ), (7.130)

while the law (7.118) yields a similar relation for the strain-rate formulation

μ̃33(ξ1) =
[
1 + 2

3
f̌ (ξ1) + 4

3
f̌ (ξ3) + 2

3
(b1 + 2b−2

1 ) ǧ(ζ)

]−1

, (7.131)

where μ̃33 = μ33/μ0 denotes the dimensionless axial viscosity. The arguments of the
response functions in the above two expressions are

ξ1 = b1 − b−1
1 ≥ 0, ξ3 = b−2

1 − b21 ≤ 0,

ζ =
√

(2b1 + b−2
1 − 1)2 − 4 ≥ 0.

(7.132)

In the limit of indefinitely large axial strains, when b1 → ∞, we have ξ1 → ∞,
ξ3 → −∞ and ζ ∼ 2b1 → ∞, so μ̃33(ξ1) → E−1

a , where Ea is the enhancement
factor for compression. Thus, eliminating g(ζ) by (7.125), Eqs. (7.130) and (7.131)
supply

2
3 f̄ (∞) + 4

3 f̄ (−∞) − 2
3 f̄

o(∞) = 2 f̄ e(∞) − 4
3 f̄

o(∞) = E−1
a − 1, (7.133)

2
3 f̌ (∞) + 4

3 f̌ (−∞) − 2
3 f̌

o(∞) = 2 f̌ e(∞) − 4
3 f̌

o(∞) = Ea − 1, (7.134)

which are analogous relations for the limit values of the response coefficients in
the stress and strain-rate formulations, respectively, with E−1

a in the first expression
replaced by Ea in the second expression.

In the simple shear flow, assumed to occur in the plane Ox1x3, the deformation
field is described by Eq. (7.54) on p. 232, with the deformation and strain-rate tensors
B and D defined by (7.55). For the sake of simplicity, it is assumed that the flow
starts from the isotropic state λ1 = λ2 = λ3 = 1 (in Sects. 7.3 and 7.4, for more
generality, we had λ1 = λ−1

3 �= 1, λ2 = 1). In terms of the strain κ measuring the
shear deformation in the plane Ox1x3, the new response function arguments are
defined by
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ξ1 = −ξ3 = ζs =
√

(2 + κ2)2 − 4 , ξ2 = 0. (7.135)

With the above-defined variables, the stress formulation of the flow law (7.115)
gives the following relation for the normalized shear viscosity:

μ̃13(κ) = S13
2μ0D13

= 1 + 2
[
f̄ e(ζs) − (2 + κ2) f̄ o(ζs)/ζs

]
, (7.136)

with μ̃13(0) = 1 in the initial undeformed, and isotropic, state. In the limit ofκ → ∞,
we have ζs ∼ κ2 → ∞, so μ̃13(κ) → E−1

s , where Es is the shear enhancement factor.
Thus, relation (7.136) yields

2
[
f̄ e(∞) − f̄ o(∞)

] = E−1
s − 1. (7.137)

In the case of the strain-rate formulation (7.118) of the additive constitutive law,
the derivation of the viscosity relation analogous to (7.136) is more difficult, as was
already pointed out in Sect. 7.4.2. This is due to the fact that the enforcement of
the simple shear deformation (with all the strain-rate tensor components equal to
zero except D13 = D31 �= 0) requires the determination of all the (non-vanishing)
diagonal components of the deviatoric stress tensor S. We omit here all the details
(they can be found in the paper byMorland and Staroszczyk 2003b) and only present
the final result for the limit normalized shear viscosity at indefinitely large strain κ:

2
[
f̌ e(∞) − f̌ o(∞)

]
= Es − 1, (7.138)

which is the analogue of the limit relation (7.137), with E−1
s now replaced by Es .

The two pairs of relations, (7.133) and (7.137) for the stress formulation, and
(7.134) and (7.138) for the strain-rate formulation, allow us to express the limit
values of the even and odd parts of the response functions in terms of the axial and
shear enhancement factors Ea and Es . Accordingly, the combination of the uniaxial
and simple shear relations, (7.133) and (7.137), for the stress formulation, gives

f̄ e(∞) = 1
2 (3E−1

a − 2E−1
s − 1), f̄ o(∞) = 3

2 (E
−1
a − E−1

s ). (7.139)

In the strain-rate formulation, in turn, the corresponding relations derived from
(7.134) and (7.138) are defined by

f̌ e(∞) = 1
2 (3Ea − 2Es − 1), f̌ o(∞) = 3

2 (Ea − Es), (7.140)

and are analogous to (7.139), with E−1
a replaced by Ea , and E−1

s by Es . The limit
values of the other response functions, Ḡ(∞) and Ǧ(∞), are then obtained from
(7.129).
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For the previously used values of the axial and shear enhancement factors, Ea =
1/3 and Es = 5 for cold ice, and Ea = 3 and Es = 8 for warm ice, the limit
expressions (7.139) for the stress formulation are

cold ice : f̄ e(∞) = 3.8, f̄ o(∞) = 4.2, Ḡ(∞) = −8.4,

(7.141)

warm ice : f̄ e(∞) = −0.125, f̄ o(∞) = 0.3125, Ḡ(∞) = −0.625,

(7.142)

while the corresponding values for the strain-rate formulation prescribed by (7.140)
are

cold ice : f̌ e(∞) = −5, f̌ o(∞) = −7, Ǧ(∞) = 14, (7.143)

warm ice : f̌ e(∞) = −4, f̌ o(∞) = −7.5, Ǧ(∞) = 15, (7.144)

with the limits f (∞) = f e(∞) + f o(∞) and f (−∞) = f e(∞) − f o(∞).
The limit relations (7.141)–(7.144), together with the derivative restriction

(7.128)2 on f (ξ) at ξ = 0 (b = 1), constitute aminimum set of conditions which fab-
ric response functions in a valid constitutive model must satisfy. In order to develop
a realistic theory, the response functions should predict observed ice creep responses
over the whole range of relevant strains, not only at their selected values. Morland
and Staroszczyk (2003b) adopted idealized monotonic response functions to approx-
imate the real behaviour of ice during compression and shearing. These functions
prescribe the variations of the normalized axial and shear viscosities with relevant
strains as follows:

μ̄33(b1) = 1 + (E−1
a − 1)

{
1 − exp[1 − (b1 − 1)/b∗]2} , (7.145)

μ̄13(κ) = 1 + (E−1
s − 1)

{
1 − exp(−κ2/k∗)

}
, (7.146)

where b∗ and k∗ are the scales of b1 and κ2, respectively, over which μ̄33(b1) and
μ̄13(κ

2) make a significant change. Then, a variety of plausible response function
representations with free parameters were explored, with the objective to correlate, to
a good approximation, themodel predictedmaterial responses μ̃33 and μ̃13 with those
prescribed by (7.145) and (7.146). The correlations were carried out by a weighted
least squares matching. The details (the forms of the response functions and the
specific values of the free parameters entering those functions) can be found in the
afore-cited work. Here, we restrict ourselves to the presentation of the final results.
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7.5.3 Illustrations

Following the discussion on the construction and the properties of the response
functions in the additive stress and strain-rate constitutive formulations, some results
of simulations are presented below.

Figures 7.14 and 7.15 show the variation of the fabric response functions for cold
ice. These functions have been obtained by correlating the results given by the flow
laws (7.115) and (7.118) with the assumed viscous responses (7.145) and (7.146).
Fig. 7.14 displays the functions f̄ (ξ), ḡ(ξ) and Ḡ(ξ) in the stress formulation of the
flow law, with f̄ o(∞) as unit. It is seen that all the response functions are nearly
monotonic. The analogous fabric response functions f̌ (ξ), ǧ(ξ) and Ǧ(ξ) in the
strain-rate formulation, all nearly monotonic again, are shown in Fig. 7.15, with
f̌ o(∞) adopted as unit. It is seen that the corresponding functions, both qualitatively
and quantitatively, are very similar in both formulations.
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Fig. 7.14 Fabric response functions f̄ (ξ), ḡ(ξ) and Ḡ(ξ) in the stress formulation for cold ice.
Reprinted with permission from Morland and Staroszczyk (2003b), Fig. 4. Copyright 2003 by
Springer Nature
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Fig. 7.15 Fabric response functions f̌ (ξ), ǧ(ξ) and Ǧ(ξ) in the strain-rate formulation for cold ice
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Fig. 7.16 Normalized
uniaxial viscosities μ̃33
predicted by the stress
(dashed line) and the
strain-rate (dashed-dotted
line) formulations compared
with the prescribed response
μ̄33 (solid line) for cold ice
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Figure 7.16 illustrates the variation of the normalized uniaxial viscosity with the
lateral stretch λ1 in unconfined compression performed along the x3 axis. Compared
with the prescribed response μ̄33 (solid line), defined by (7.145), are the predicted
responses μ̃33 given by Eqs. (7.130) and (7.131) for the stress (dashed line) and
strain-rate (dashed-dotted line) forms of the constitutive law. We note a very close
overall agreement achieved with the response functions plotted in Figs. 7.14 and
7.15, with the mean error 0.01 and the maximum error equal to 0.06 (Morland and
Staroszczyk 2003b). A particularly good matching is seen for the lateral stretches
λ1 ranging from about 1 to about 3. The predicted simple shear responses μ̃13 are
practically identical to the prescribed response μ̄13 defined by (7.146), therefore their
graphical illustration is omitted here.

The results for warm ice given by the additive forms of the orthotropic constitutive
laws defined by Eqs. (7.115) and (7.118) are illustrated in Figs. 7.17 and 7.18.
The plots in Fig. 7.17 show the variation of the axial viscosity μ̃33 with increasing
deformation. Again, the prescribed response μ̄33 (solid line), defined by (7.145), is
compared with the predicted responses μ̃33 for the stress formulation (dashed line),
(7.130), and the strain-rate formulation (dashed-dotted line), (7.131). It is seen that
the correlation results for warm ice are not as good as those obtained for cold ice
(see Fig. 7.16), though they can still be regarded as satisfactory for applications.
The greatest differences between the predicted and the prescribed responses, equal
to 0.07, occur at the moderate values of the lateral stretches λ1, ranging from about
1.5 to about 2, with much better conformity taking place at either small or very large
deformations.

Finally, Fig. 7.18 demonstrates how the normalized shear viscosity of warm ice
evolves with increasing shear strain κ. The prescribed viscosity μ̄13 (solid line),
given by (7.146), is compared with the viscosities μ̃13 predicted by the stress (dashed
line) and the strain-rate (dashed dotted line) formulations. As in the case of the
uniaxial response illustrated in the previous figure, the best correlations are achieved
for either very small or very large shear strains. The largest discrepancies between
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Fig. 7.17 Normalized
uniaxial viscosities μ̃33
predicted by the stress
(dashed line) and the
strain-rate (dashed-dotted
line) formulations compared
with the prescribed response
μ̄33 (solid line) for warm ice
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Fig. 7.18 Normalized shear
viscosities μ̃13 predicted by
the stress (dashed line) and
the strain-rate (dashed-dotted
line) formulations compared
with the prescribed response
μ̄13 (solid line) for warm ice
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the prescribed and the predicted responses, equal to 0.09 occur at strains κ ∼ 1.5,
though they can still be considered as acceptable for polar ice sheet flow modelling
discussed in Chap. 8.

7.6 Dynamic Recrystallization Model

Themicro-mechanism of dynamic (migration) recrystallization and its consequences
for the macroscopic viscous creep behaviour of polycrystalline ice are described in
Sect. 6.4, devoted to the micro-mechanical modelling of this important phenomenon.
Here, the mechanism of dynamic recrystallization is treated by applying a phe-
nomenological approach. Thus, the processes taking place on the crystal level are
ignored, and only the macroscopic effects, consisting in the destruction of the macro-
scopic anisotropy of ice and return to its nearly isotropic response, are accounted for
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in the constitutive description developed further in this section. For this purpose, some
of the orthotropic viscous flow laws formulated earlier in this chapter are extended
(Staroszczyk andMorland 2001; Staroszczyk 2004) to incorporate the mechanism of
continuous weakening of the anisotropic fabric over a finite range of shear strain-rate
before the ice isotropy is restored. The fabric weakening at increasing strain-rates is
captured by incorporating dependence on a smooth scaling function which, in turn,
depends on a critical strain-rate invariant and temperature, and increases as temper-
ature decreases. The effects of stress and strain magnitudes on ice recrystallization
(analysed in Sect. 6.4) are not investigated, though they can be modelled in a similar
fashion; that is, by scaling the ice fabric anisotropic strength by properly constructed
smooth functions of stress/strain invariant arguments. Both multiplicative and addi-
tive forms of the phenomenological constitutive equations are used to derive their
modified counterparts in order to incorporate the dynamic recrystallization process.
The multiplicative and additive forms of the laws are then employed to simulate the
viscous behaviour of ice in the uniaxial and simple shear flow configurations, and to
compare the model predictions of ice viscosities for different magnitudes of critical
strain-rates defining the onset of recrystallization.

7.6.1 Multiplicative Form of the Model

The starting point of our considerations is the multiplicative form of the orthotropic
constitutive law formulated in Sect. 7.3, expressing the deviatoric stress S in terms
of the strain-rate D and the left Cauchy-Green deformation tensor B, and given by
Eq. (7.43) on p. 229 as follows:

S = μ0

{ 3∑

r=1

f (br )
[
M(r)D + DM(r) − 2

3 tr (M(r)D)I
] +

+ K−1G(K )
[
BD + DB − 2

3 tr (BD)I
] }

. (7.147)

Recall that the arguments of the material response coefficients f (br ) and G(K ) are
the three eigenvalues br of the tensor B defined by (7.10), and the trace of the latter
tensor K = b1 + b2 + b3.

The isotropic ice viscosity μ0 in (7.147) is assumed again to be a function of the
strain-rate invariant tr D2 and temperature T , see Sect. 7.3. Hence, we adopt

μ0 = μ0 ( Ĩ , T ), Ĩ = 1
2 tr D

2 = D2
0 I, (7.148)

where I is defined by (7.46) on p. 230 and D0 = 1 yr−1 = 3.17 × 10−8 s −1 is the
normalizing strain-rate unit describing a typical strain-rate magnitude in large polar
ice sheets. The temperature-dependence of μ0 is described by the relation
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μ0 ( Ĩ , T ) = μ0 ( Ĩ , Tm)/a(T ), (7.149)

where Tm denotes the ice melting point, and a(T ) is the temperature scaling factor
given by (3.18) on p. 40, with the properties a (Tm) = 1 and a (T ) < 1 for T < Tm .

Following Staroszczyk and Morland (2001), it is supposed that fabric weakening
due to the ice recrystallization process depends on a single strain-rate invariant and
temperature through an effective strain-rate invariant Ī defined by

Ī = Ĩ

[c (T )]2 , (7.150)

where the scaling factor c (T ) is a decreasing function of temperature, so that Ĩ
is a decreasing function of temperature at fixed Ī . Further, we introduce a critical
temperature-independent strain-rate invariant Īc, with a corresponding temperature-
dependent critical value Ĩc of the strain-rate invariant, at the centre of the range over
which fabric weakening occurs. This new invariant, by analogy to (7.150), is defined
by

Īc = Ĩc
[c (T )]2 . (7.151)

Next we introduce a critical strain-rate invariant range, with its lower and upper
critical values given by

Īcl = Īc (1 − δ), Īcu = Īc (1 + δ), (7.152)

where the full anisotropic ice fabric strength is retained below Īcl , isotropy is restored
above Īcu , and there is a continuousmonotonic decrease of fabric strength between Īcl
and Īcu . The critical centre level, Īc, and relative half-span of the critical range, δ, are
free parameters in the recrystallization model. The mechanism of fabric weakening
is then expressed in terms of a continuous strength scaling factor r( Ī ) defined as
follows:

r( Ī ) = 1 if Ī ≤ Īcl ,

r ′( Ī ) ≤ 0 if Īcl ≤ Ī ≤ Īcu,

r( Ī ) = 0 if Ī ≥ Īcu .

(7.153)

An example scaling function r( Ī ) is shown in Fig. 7.19. The plotted function is a
third-order polynomial, with the property d r/ d Ī = 0 at both Ī = Īcl and Ī = Īcu ,
and the half-span of the critical range of the effective strain-rate invariant adopted as
δ = 0.2.

In order to modify the viscous flow law (7.147) so that the full fabric response
is reduced to the isotropic response continuously through the critical range of Ī , the
Cauchy-Green deformation tensor B is replaced by a modified tensor involving the
scaling factor r( Ī ). The modified deformation measure changes continuously from
B when r( Ī ) is unity to the unit tensor I when r( Ī ) is zero. Two modified tensors
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Fig. 7.19 Fabric strength
scaling function r( Ī )
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which are linear in both the tensor B and the scalar r( Ī ) are considered. The first is

B̄ = I + r( Ī ) [B − I], (7.154)

and the second is

B̂ = J0 B̄ = J0 {I + r( Ī ) [B − I]}, J0 = (det B̄)−1/3. (7.155)

Both modified deformation measures have the properties

B̄ = B̂ = B,

B̄ = B̂ = I,

J0 = 1 when r = 1,

J0 = 1 when r = 0,
(7.156)

and change continuously from B when r( Ī ) = 1 to I when r( Ī ) = 0. This change
occurs, however, through amodification of the tensor B, not strictly through a scaling
of the strength of the anisotropy. Furthermore,

B = I ⇒ B̄ = I, J0 = 1, hence B̂ = I . (7.157)

The eigenvectors (principal axes) of both B̄ and B̂ are those of B, namely e(r)

(r = 1, 2, 3), and hence the corresponding structure tensors M(r) are the same. The
eigenvalues (squared principal stretches) are, respectively,

b̄r = 1 + r( Ī ) [br − 1], b̂r = J0 b̄r (r = 1, 2, 3). (7.158)

Note that
det B = 1, det B̄ �= 1, det B̂ = 1, (7.159)

K = tr B, K̄ = tr B̄ �= K , K̂ = J0 K̄ �= K , (7.160)
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Table 7.1 Six combinations
of the modified deformation
measures

Ā B̄ C̄ Â B̂ Ĉ

B̄ B̄ B B̂ B̂ B

b̄r br b̄r b̂r br b̂r
K̄ K K̄ K̂ K K̂

and in a plane deformation, with b2 = 1:

b2 = 1 ⇒ b̄2 = 1, but b̂2 �= 1. (7.161)

Associated with each of the modified deformation measures B̄ and B̂ there are
three combinations of a chosen modified tensor and two deformation invariants,
labelled Ā, B̄, C̄ , and Â, B̂, Ĉ , respectively (see Table 7.1). These six combinations
of the deformationmeasures lead to sixmodified viscous flow laws obtained from the
constitutive equation (7.147) by replacing B and its invariants by each of the above
sets in turn. These six new flow laws are then explored by applying the concept of
instantaneous directional viscosities, previously applied in Sects. 7.2 and 7.5. Thus,
we consider distinct axial stretches described by (7.17) and (7.18), with arbitrary
strain-rate history, for each of the six laws in turn, ending with a deformation B,
associated tensors B̄ and B̂, and the respective invariants defined by (7.158) and
(7.160). If the stress and strain-rate are now removed abruptly, subsequent deforma-
tion at any strain-rate has an instantaneous response governed by these ‘frozen’ fabric
measures. Then, simple shearing on the principal stretch planes, described by (7.20),
determines instantaneous viscosities for the six modified laws, analogous to (7.41).
These viscosities were examined in detail by Staroszczyk and Morland (2001), and
it turned out that only one of the six plausible constructions applied to the original
orthotropic flow law consistently satisfies all the viscosity equalities and inequalities
(7.63)–(7.68) on p. 235 derived by Staroszczyk and Morland (2000a), and yields
physically acceptable material behaviour. This one particular construction, labelled
here by Â, was therefore left for further applications.

Accordingly, the constitutive relation (7.147) with the replacements for the modi-
fication Â shown in Table 7.1 gives the following expression for the normalized axial
viscosity μ33/μ0 :

S33
2μ0D33

= 1

3

[
f (b̂1) + 2 f (b̂3) + G(K̂ )

K̂

(
b̂1 + 2 b̂3

)
]

, (7.162)

which is analogous to relation (7.53) on p. 232 given by the unmodified flow law. In
(7.162),

b̂1 = b̂2 = J0 b̄1, b̂3 = J0 b̄3, K̂ = J0 K̄ , J0 = (b̄21 b̄3)
−1/3,

b̄1 = 1 + r(b1 − 1), b̄3 = 1 + r(b−2
1 − 1), K̄ = 3 + r(2b1 + b−2

1 − 3).

(7.163)
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In simple shear flow in the plane Ox1x3 started from an initially isotropic state
(λ1 = λ2 = λ3 = 1), with the deformation field described by (7.54) and (7.55), and
the eigenvalues and eigenvectors of B determined by (7.56) and (7.57), the flow
law (7.147), with the replacements corresponding to Â in Table 7.1, defines the
normalized shear viscosity μ13/μ0 in the form

S13
2μ0D13

= 1

2

[
f
(
b̂1

) + f
(
b̂3

) + G(K̂ )

K̂

(
2 + κ2

)
]

, (7.164)

analogous to (7.60) on p. 233. The invariants in (7.164) are

b̂1 = J0b̄1, b̂3 = J0b̄3, K̂ = J0 K̄ , J0 = det(b̄1b̄3)
−1/3,

b̄1 = 1 + r(b1 − 1), b̄3 = 1 + r(b−1
1 − 1), K̄ = 3 + r(b1 + b−1

1 − 2).

(7.165)

7.6.2 Flow Simulations with the Multiplicative Law

The response of ice to uniaxial compression and simple shearing, described by rela-
tions (7.162) and (7.164) respectively, was simulated numerically in order to examine
the predictions of the multiplicative form of the modified constitutive model. It was
assumed in the simulations that the flow of ice starts from an isotropic state, defined
by B = I , and the deformation rates grow continuously with time from their respec-
tive values prescribed at the beginning of flow. Thus, as the deformation progresses
and the ice fabric anisotropy develops, at some instant of time the effective strain-rate
invariant Ī reaches its lower critical value, Īcl (see Fig. 7.19), marking the onset of
the dynamic recrystallization process, and then, with the strain-rates still growing,
the upper critical value of the invariant, Īcu , is reached, beyond which the fabric
response becomes isotropic again.

The simulations were carried out with the fabric response function f (b) adopted
in the form (7.76), with the free parameter value m = 1.5. The other response func-
tion, G(K ), is related to f (br ) by (7.69). The limit values of both response functions
are determined in terms of the reciprocals of the enhancement factors Ea and Es by
Eq. (7.73) on p. 235, and their specific values for cold andwarm ice are given, respec-
tively, by (7.74) and (7.75). Note that the functions f (b) and G(K ) are independent
of temperature, so the functions determined by the two sets of the latter limits are
modelling warm and cold ice treated as different materials, not the response of the
same ice at warm and cold temperatures.

In the uniaxial unconfined compression simulations it is assumed that ice is com-
pressed along the x3-axis at a constant displacement-rate; that is, λ̇3 = constant < 0,
withλ3 (t = 0) = 1.Accordingly, the evolution of the principal stretches is expressed
by the relations

λ3 = 1 + λ̇3t ≤ 1, λ1 = λ2 = λ
−1/2
3 ≥ 1. (7.166)
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Fig. 7.20 Evolution of the
normalized axial viscosity
μ33/μ0 with lateral stretch
λ1 in uniaxial compression
for different values of the
critical stretch λc

1, predicted
by the multiplicative form of
the flow law, for cold ice.
Reprinted from Staroszczyk
and Morland (2001), Fig.2b,
with permission of the Royal
Society of London
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Since the axial strain-rate in the assumed flow configuration is D33 = λ̇3/λ3 , and the
strain-rate invariant is Ĩ = 3

4D
2
33 , it can be found that the ratio of the current value

of the invariant Ĩ to the critical value Ĩc is given by

Ĩ

Ĩc
= Ī

Īc
=

(
D33

Dc
33

)2

=
(

λc
3

λ3

)2

=
(

λ1

λc
1

)4

, (7.167)

where Dc
33 is the axial strain-rate at which Ĩ = Ĩc , or equivalently Ī = Īc , and λc

1 and
λc
3 are the principal stretches at which the critical value of the strain-rate invariant is

reached. By selecting the value of the lateral stretch λc
1 at which we wish the process

of recrystallization to occur during a compression test, we can find, for a given value
of Īc, the required displacement-rate λ̇3 . Using then Eq. (7.167) one can evaluate the
value of the current strain-rate invariant relative to its critical level (which is needed
for the calculation of the fabric strength scaling factor r( Ī )) in terms of the current
stretch λ1 relative to λc

1.
The variation of the normalized axial viscosity μ33/μ0 = S33/(2μ0D33) with

increasing lateral stretch λ1 , described by (7.162), is illustrated in Fig. 7.20, showing
the results for cold ice. The curves in the figure (solid lines) are labelled by the
corresponding values of the critical axial stretches λc

1, and for reference the result for
the uniaxial compression with no dynamic recrystallization involved is also shown
(dashed lines). It can be seen that, irrespective of the value of the critical stretch
λc
1, the transition from the strongly anisotropic to isotropic response (for which the

normalized axial viscosity is unity) takes place over a narrow range of strain, within
which an abrupt change in the ice axial viscosity occurs.

In the simple shear simulations it is assumed that an ice sample is deformed in
such a way that the rate of shear-strain increases linearly with time, and at the start
of viscous flow both shear strain and its rate are zero. Thus,

κ̇ = ct, κ = 1
2 ct

2, (7.168)
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Fig. 7.21 Evolution of the
normalized shear viscosity
μ13/μ0 with strain κ in
simple shear for different
values of the critical strain
κc, predicted by the
multiplicative form of the
flow law, for cold ice.
Reprinted from Staroszczyk
and Morland (2001), Fig.3b,
with permission of the Royal
Society of London
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where c > 0 is a constant. The only non-zero strain-rate tensor components are
D13 = D31 = 1

2 κ̇, so the strain-rate invariant is Ĩ = D2
13 = 1

4 κ̇2 = 1
2 cκ. Hence, the

ratio of the current value of the invariant Ĩ to the critical value value Ĩc is expressed
by

Ĩ

Ĩc
= Ī

Īc
=

(
D13

Dc
13

)2

= κ

κc
, (7.169)

where Dc
13 is the shear strain-rate at which Ĩ = Ĩc , hence Ī = Īc , and κc is the

corresponding shear strain at which the critical value of the strain-rate invariant is
reached. Similarly to the above-discussed case of the uniaxial compression simu-
lation, one can evaluate, for assumed critical values of the shear strain κc and the
effective strain-rate invariant Īc , the corresponding value of the parameter c defining
the shear strain-rate variation with time. Then, by employing (7.169), it is possible
to express the ratio of the current strain-rate invariant Ī to the critical value Īc as a
function of the current shear strain κ relative to the prescribed critical shear κc, and
hence to evaluate the value of the fabric strength scaling factor r( Ī ).

The results of the simple shear simulations are plotted in Fig. 7.21, illustrating
the variation of the shear viscosity μ13/μ0 = S13/(2μ0D13)with increasing strain κ,
depending on the values of the critical strain κc. Shown are the results obtained for
cold ice; qualitatively very similar behaviour is predicted by the model for warm ice
(Staroszczyk and Morland 2001; Staroszczyk 2004). The solid lines in the figure are
labelled by the respective values of the critical shear strain κc , and the dashed lines
illustrate the behaviour of ice when no dynamic recrystallization occurs. It is seen in
the plots that the transition from the strongly anisotropic to isotropic response is less
abrupt than in the case of uniaxial compression (see Fig. 7.20), though a surprising
prediction of the model is the increase in the normalized shear viscosity beyond unity
prior to the restoration of isotropy (the same feature is predicted by the model for
warm ice). In some way this fabric strengthening feature resembles the hardening
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of initially isotropic ice at the beginning of shearing (also predicted by the micro-
mechanical models presented in Chap. 6). However, it is likely that such a property
predicted by the multiplicative form of the constitutive model does not reflect the
real behaviour of the material. This prompted an alternative approach, in which the
flow law is decomposed additively into isotropic and anisotropic parts, in a manner
discussed in the previous Sect. 7.5, and the fabric strength scaling which describes
the ice fabric weakening due to recrystallization is applied only to the anisotropic
part of the constitutive law.

7.6.3 Additive Form of the Model

The previous modified multiplicative form of the constitutive equation considered
in Sect. 7.6.1 is constructed by scaling the deformation tensor B and its invariants
in the flow law (7.147), but leaving the response coefficients f and G unchanged
compared to the original (that is, with no fabric weakening due to recrystallization)
orthotropic viscous flow law (7.43) on p. 229. Now a different method is followed,
in which an additive form of the flow law is used, analogous to that considered in
Sect. 7.5. In this alternative approach, the ice fabric strength scaling is applied only
to the response coefficients arising in the anisotropic part of the flow law, whereas
the deformation tensor B and its invariants are not modified. Accordingly, we are
concerned here with the constitutive law of the general form given by (7.108) on
p. 250, subject to (7.110), and adopt the isotropic and anisotropic responses, H I and
H A respectively, see (7.115), defined by the following representations:

H I (D) = 2μ0 D,

H A(D, B, M(r)) = μ0

{ 3∑

r=1

f̃ (br )
[
M(r)D + DM(r) − 2

3 tr (M
(r)D)I

] +

+ K−1G̃(K )
[
BD + DB − 2

3 tr (BD)I
] }

, (7.170)

where f̃ (br ) and G̃(K ) are new fabric response coefficients. The vanishing of the
anisotropic part H A when B = I , see (7.110)1 , provides the normalization condition
for the functions f̃ and G̃, replacing (7.39)2 on p. 229,

f̃ (1) + 1
3 G̃(3) = 0. (7.171)

The flow law (7.170) determines the instantaneous directional viscosities, origi-
nally given by (7.41), in the form

μi j = 1
2 μ0

{
2 +

[
f̃ (bi ) + f̃ (b j ) + (bi + b j ) K

−1 G̃(K )
]}

, (7.172)
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and the viscosity relations (7.63)–(7.68) translate to the same conditions on the
functions f̃ and G̃ as previously on f and G, with the new normalization (7.171).
Hence, the equality (7.66) for the plane flow yields the relation

G̃(K ) = − K

b1 − b−1
1

[
f̃ (b1) − f̃ (b−1

1 )
]
, K ≥ 3, (7.173)

which connects f̃ and G̃, with b1 defined in terms of K by (7.70). In the limit, as
b1 → 1 and K → 3, the latter equation supplies

f̃ (1) = f̃ ′(1), (7.174)

which replaces (7.71) in the multiplicative formulation, while the limit condition for
b1 → ∞ now becomes

f̃ (0) − f̃ (∞) − G̃(∞) = 0. (7.175)

For the uniaxial unconfined compression deformation, assumed to occur along
the x3-axis, and defined by (7.17)–(7.19), the constitutive relation (7.170) yields the
normalized axial viscosity μ33/μ0 expressed by

S33
2μ0D33

= 1 + 1

3

[
f̃ (b1) + 2 f̃

(
b−2
1

) + G̃(K )

K

(
b1 + 2b−2

1

)
]

, (7.176)

which, as b1 → ∞, and hence K ∼ 2b1, provides the limit relation

1 + 1
3 f̃ (∞) + 2

3 f̃ (0) + 1
6 G̃(∞) = E−1

a . (7.177)

In the simple shear flow taking place in the plane Ox1x3, and defined by relations
(7.54), (7.55) and (7.58), the normalized instantaneous shear viscosity μ13/μ0 is
given by

S13
2μ0D13

= 1 + 1

2

[
f̃ (b1) + f̃

(
b−1
1

) + G̃(K )

K

(
2 + κ2

)
]

, (7.178)

which for an indefinitely large shear strain κ → ∞, when b1 ∼ κ2 and K ∼ κ2,
yields the limit condition

1 + 1
2 f̃ (∞) + 1

2 f̃ (0) + 1
2 G̃(∞) = E−1

s . (7.179)

The three relations (7.175), (7.177) and (7.179) determine the limit values of the two
response functions f̃ and G̃ in terms of the axial and shear enhancement factors, Ea

and Es respectively, as follows:
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f̃ (0) = E−1
s − 1,

f̃ (∞) = 6E−1
a − 5E−1

s − 1,

G̃(∞) = 6 (E−1
s − E−1

a ),

(7.180)

with the additional restriction (7.174) imposed on the choice of the fabric response
function f̃ (br ). The latter expressions are the analogues of the limit relations (7.73)
on p. 235 for the response functions in the unmodified multiplicative viscous flow
law.

We can now simply describe themechanismof recrystallization-induced ice fabric
weakening with increase of the effective strain-rate invariant Ī by applying the fabric
strength scaling function r( Ī ) directly to the response coefficients in the anisotropic
function H A. Therefore,

f̆ (b) = r( Ī ) f̃ (b), Ğ(K ) = r ( Ī )G̃(K ),

H̆ A(D, B, M(r)) = r ( Ī )H A(D, B, M(r)),
(7.181)

which do not introduce any modified forms of the deformation tensor B or its invari-
ants, and replace f̃ (b), G̃(K ) and H A(D, B, M(r)), respectively, in the viscous law
(7.170). The instantaneous directional viscosities (7.172) then become

μi j = 1
2μ0

{
2 + r( Ī )

[
f̃ (bi ) + f̃ (b j ) + (bi + b j ) K

−1 G̃(K )
]}

, (7.182)

and the six viscosity equalities and inequalities (7.63)–(7.68) are not changed by the
factor r in expression (7.182); a consistent f̃ (b) when r = 1 is consistent for all r .
The axial and shear flow responses (7.176) and (7.178) depend, of course, on how r
changes during a given strain-rate history.

7.6.4 Flow Simulations with the Additive Law

The modified additive form of the constitutive law (7.170) was used to simulate the
flows of ice under sustained unconfined uniaxial compression and simple shearing,
defined, as in Sect. 7.6.2, by relations (7.166) and (7.168), respectively. The same
form (7.76) on p. 236 of the fabric response function was adopted again for f̃ (br ),
withm = 1.5, and the limit values determined now by (7.180). Also the same scaling
function r( Ī ) plotted in Fig. 7.19, and the same values of the enhancement factors
(Ea = 1/3 and Es = 5 for cold ice and Ea = 3 and Es = 8 for warm ice) defin-
ing the limit viscous properties of the material were adopted in the calculations,
with the purpose to compare the predictions of the two, multiplicative and additive,
formulations of the orthotropic flow law.

The results of simulations of the uniaxial compression, illustrating the variation of
the normalized axial viscositywith increasing lateral stretchλ1, as defined by (7.176),
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Fig. 7.22 Evolution of the
normalized axial viscosity
μ33/μ0 with the lateral
stretch λ1 in uniaxial
compression for different
values of the critical stretch
λc
1, predicted by the additive

form of the flow law: a warm
ice, b cold ice. Reprinted
from Staroszczyk and
Morland (2001), Fig. 5, with
permission of the Royal
Society of London
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are shown in Fig. 7.22, with the labels attached to the solid lines indicating again
the respective values of the critical stretches λc

1, and the dashed lines showing the
responses with no dynamic recrystallization taking place. By comparing the results
plotted in the figure with those presented in Fig. 7.20 for cold ice one can note that the
differences between the creep responses predicted by the two forms of the viscous
flow law are practically insignificant. The same observation also applies to warm ice
(Staroszczyk 2004).

The results of the simple shear flow simulations are illustrated in Fig. 7.23,
showing the evolution of the shear viscosity with strain κ, as described by the rela-
tions (7.168). Comparison of the responses predicted by the twomodels (see Fig. 7.21
with the results for cold ice) shows that the additive form of the flow law yields results
which significantly differ from those given by the multiplicative formulation. In par-
ticular, it is seen that the shear viscosities during the transition from the anisotropic
to isotropic response now increase in a monotonic manner as the unit normalized
viscosity is approached. This is qualitatively a different response than that predicted
by the multiplicative form of the flow law considered in Sects. 7.6.1 and 7.6.2.
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Fig. 7.23 Evolution of the
normalized shear viscosity
μ13/μ0 with the strain κ in
simple shear for different
values of the critical strain
κc, predicted by the additive
form of the flow law: a warm
ice, b cold ice. Reprinted
from Staroszczyk and
Morland (2001), Fig. 6, with
permission of the Royal
Society of London
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Although the behaviour illustrated in Fig. 7.23, with no increase in shear viscosity
beyond unity prior to the isotropy restoration, seems to be physically more likely
than the behaviour shown in Fig. 7.21, it is difficult to conclusively assess which
of the two types of the viscous response is closer to the real material behaviour of
polycrystalline ice, since no empirical data are available yet to compare the theory
with experiment.
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Chapter 8
Polar Ice Sheet Flow Models

Polar ice sheet dynamics is concernedwith the flow of large land-based icemasses on
geophysical time scales. In essence, it deals with two fundamental problems. The first
one is the calculation of the ice thickness (the ice free surface profile) and velocity
and temperature fields which, for given bedrock topography and the distributions of
the ice accumulation/ablation and temperature at the surface, maintain existing ice
sheets in a steady state (that is, keep their geometry unchanged in time). The results
obtained by solving this flow problem are necessary for the determination of the age
of ice at different depths (to help to interpret ice core samples retrieved from polar
ice caps), and are needed for the evaluation of the free surface ice velocities (these,
for instance, will help to predict the future locations of Antarctic research stations or
infrastructure which drift on the ice sheet surface). The second, and more difficult,
problem is an unsteady one and deals with the evaluation of an ice sheet response to
changes in the surface acumulation/ablation rates and temperature. The solution of
this problem is important to those involved in the modelling of past or future global
climate scenarios.

The ice sheet dynamics uses the methods of continuum mechanics to describe
the motion of ice by a system of equations that express the laws of thermodynamics
(mass, momentum and heat balances), the mechanical and thermal interactions of
ice with the atmosphere and the bedrock, and the physical properties of the poly-
crystalline, strongly anisotropic, material. Since, for given climatic conditions, an
ice sheet domain is not a priori known, we deal with a complex initial/boundary
value problem on an unknown domain with a moving surface. Due to the intrinsic
complexity, the solution of the complete system of the thermomechanically cou-
pled equations describing the flow problem is difficult. For this reason, a number of
simplifying assumptions were adopted in early ice sheet flow models to reduce the
complexity of calculations. These included: (1) treatment of the ice as an incom-
pressible body, (2) prescription of a temperature field to uncouple the energy balance
from the mass and momentum balances, (3) reduction of geometrical dimensionality
by taking advantage of symmetries in a flow field and solving either a plane or an
axially symmetric problem, and (4) an assumption of the ice isotropy; for details
refer to the papers by Hooke et al. (1979), Raymond (1983), Hodge (1985),
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Hindmarsh et al. (1987), Hanson (1995), Hvidberg (1996), Morland (1997, 2000,
2001, 2009) Morland and Drăghicescu (1998), Drăghicescu (2001) and Cliffe and
Morland (2000, 2001, 2002, 2004). The above assumptions were gradually relaxed
in later developments, as our understanding of physical processes improved, more
general theorieswere formulated, and the power of available computational hardware
increased.

In order to solve the system of equations governing the flow of polar ice, two types
of methods are in general use. The first type comprises analytic approaches, most
often the methods of asymptotic expansions, and the other type includes discrete
approaches, usually based on either finite-difference or finite-element methods. In
the analyticmethods based on the asymptotic expansions, the flowproblem equations
are solved in an approximate way by taking advantage of the characteristic aspect
ratio of natural ice masses. The latter aspect ratio, a small dimensionless parameter
ε, reflects varying conditions in lateral directions compared to the normal direction
through an ice sheet thickness, and can be defined as the ratio of a thicknessmagnitude
to a lateral ice sheet span magnitude, or the ratio of the stress and velocity gradients
in the lateral direction of an ice sheet to those in the vertical direction. An alternative
approach is defining the small parameter ε as a dimensionless viscosity parameter
(Morland and Johnson 1980). By applying the method of asymptotic expansions in ε,
and subsequent integration of the mass and momentum balance equations through
an ice sheet depth, the number of space variables can be reduced by one, enabling
thus a considerable simplification of the flow problem solution. Such a method is
known in glaciology as the Shallow Ice Approximation (SIA), or the ReducedModel,
and was originated by Fowler and Larson (1978), and was subsequently developed
by Morland and Johnson (1980), Hutter (1981, 1983) and Morland (1984). The first
application of the SIA to numerical modelling of ice sheet flows was due to Hutter
et al. (1986); since then the method has been widely implemented, with various
modifications, in many large-scale polar ice sheet models (Hindmarsh et al. 1987;
Herterich 1988; Dahl-Jensen 1989; Huybrechts 1990; Fabre et al. 1995; Hindmarsh
2004). The Reduced Model, however, has a limitation: it is strictly valid only for bed
slopes no greater than ε. For larger bed slope magnitudes, the theory was extended by
Morland (2000, 2001) to constitute the Enhanced Reduced Model, uniformly valid
for bed topographies with moderate slopes.

Although the SIA method has proved to be very effective in the large-scale ice
sheet modelling, and soon became a standard method in theoretical glaciology, its
application, in the original formulation, was restricted to the isotropic ice flows.
Only few attempts were carried out to extend the SIA applicability to anisotropic ice.
Mangeney and Califano (1998) investigated the flow problem in the ice divide region
by adopting a transversely isotropic fabric representing that found in an ice core
drilled within the Greenland Icecore Project (GRIP). The same type of anisotropic
fabric was also usedwith the complete system ofmechanical equations byMangeney
et al. (1996, 1997) to solve, by a discretemethod, the problemof a steady-state flowof
ice under isothermal conditions. In the latter papers, however, the empirically derived
anisotropic fabrics were, in fact, functions of the ice depth only, since no anisotropic
constitutive laws relating the fabric evolution to the flow field were incorporated in



www.manaraa.com

8 Polar Ice Sheet Flow Models 277

the models. Hence, the fabrics adopted in the above-cited papers were treated as
static; that is, uncoupled from current flow fields. The full coupling between the flow
and the evolving fabric, so that the flow field is not only a function of the anisotropic
ice fabric, but also the fabric itself is a function of local field variables (current
strains and strain-rates), was incorporated in finite-element models constructed by
Staroszczyk and Morland (2000) and Staroszczyk (2003) (see Sect. 8.1 below), and
later in SIA models developed by Morland and Staroszczyk (2006) and Staroszczyk
(2006) (see Sect. 8.2).

It turns out that the inclusion of evolving ice anisotropy in the analysis signifi-
cantly complicates the flow problem solution compared to the standard SIA method
for isotropic ice, since a system of additional differential equations of the hyper-
bolic type, required to describe the evolution of the material properties along ice
particle paths, has to be solved on top of the common mass and momentum balance
equations. This might explain why no further progress in the development of SIA
models for anisotropic ice has been observed since the publication of the above-
cited papers (Morland and Staroszczyk 2006; Staroszczyk 2006), and it seems that
in recent years the interest is primarily focused on the construction of discrete mod-
els for polar ice sheet flows. The examples of such models are those presented by
Gillet-Chaulet et al. (2005),Greve andBlatter (2009),Ma et al. (2010),Gillet-Chaulet
and Hindmarsh (2011), Seddik et al. (2012), Bargmann et al. (2012) and Pan et al.
(2013).

In this Chapter both types of the afore-discussed ice sheet flow models are pre-
sented. In Sect. 8.1, a steady plane flow problem is considered, and its solution is
based on a finite-element method. Section 8.2, in turn, deals with a steady axially-
symmetric ice sheet flow problem, the solution of which is constructed as a leading-
order approximation to the results obtained by applying the SIA theory. Both models
incorporate the mechanism of dynamic recrystallization of ice. The results given by
the two models illustrate the effects of the evolving macroscopic anisotropy of ice on
the velocity fields in polar glaciers and their size and shape (the free surface profiles)
under prescribed surface accumulation/ablation and basal melting rates.More details
regarding the assumptions adopted in the models, the solution methods applied and
the results obtained are provided in the following text.

In the ice sheet flow models presented in this chapter, the viscous behaviour of
polycrystalline ice is described by the phenomenological constitutive laws formu-
lated in Chap. 7. The direct incorporation into the ice sheet models of the micro-
mechanical constitutive relations developed in Chap. 6 is not feasible yet because of
an enormous number of variables involved (the necessity of tracking the behaviour of
hundreds of ice grains separately at every material point of a numerical model con-
sisting of hundreds of thousands of discrete nodes). In order to circumvent these
difficulties of the computational nature, one can follow an approximate method
proposed by Gillet-Chaulet et al. (2005). The idea of this method is to correlate
the micro-mechanical and macroscopic responses in such a way that the micro-
scopic response of ice is expressed by a small set of geometric parameters describing
the micro-structure of the polycrystalline aggregate. The latter parameters are then
used to evaluate macroscopic directional viscosities by applying an optimization
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Fig. 8.1 Ice sheet geometry, coordinate axes and notations

technique to minimize the approximation errors. This operation is performed only
once at the start of simulations, and in subsequent computations all required values of
macroscopic viscosities are calculated by interpolating the earlier tabulated results.

8.1 Plane Ice Sheet Flow

In this section, a plane-strain, gravity-driven, steady flow of an ice sheet moving
over a rigid bedrock is considered. The ice sheet is subjected to ice accumulation or
ablation at its free surface, and to melting or refreezing at its base. For simplicity,
it is assumed that the temperature field within the body of ice does not change in
time, but can change with the depth of ice. The ice sheet cross-section is sketched
in Fig. 8.1. The free surface of the glacier is traction-free, with the stress measured
relative to the atmospheric pressure assumed to be constant (independent of the free
surface elevation). At the glacier base either no-slip (when ice is frozen to the bed) or
sliding can take place. All heat fluxes across the ice sheet boundaries are neglected
in this analysis.

8.1.1 Flow Problem Formulation

The flow problem is solved in spatial rectangular Cartesian coordinates Oxyz, see
Fig. 8.1, with the horizontal x-axis in the direction of flow to the right of the ice sheet
divide located at x = 0, and the vertical z-axis directed upwards. The corresponding
material coordinate axes, X and Z , are also shown in the figure. In the problem
considered, there is no dependence on the transverse coordinate y. The geometry of
the ice sheet is defined by the free surface elevation z = h(x) and the bed elevation
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z = f (x). The ice sheet ends at a margin XM where the ice thickness becomes
zero, h = f . The ice accumulation rate, which is a normal mass flux per unit area,
is denoted by q. It is assumed that q is positive (accumulation) in central regions
at higher elevations, and negative (ablation) at lower elevations near the ice sheet
margins. In general, q depends on both elevation h and location x . Similarly, the
normal mass flux across the bed f (x) is denoted by the melt rate b, which is assumed
positive when ice melts, and negative when ice refreezes. The ice velocity vector v is
defined by the components u, v and w in the x , y and z directions respectively, with
the transverse component v = 0 in a plane flow. In terms of the velocity components
u and w, the non-vanishing components of the strain-rate tensor D are given by

Dxx = ∂u

∂x
, Dzz = ∂w

∂z
, Dxz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
. (8.1)

The mass balance equation is here the ice incompressibility condition given by
tr D = 0, which in components reads

∂u

∂x
+ ∂w

∂z
= 0. (8.2)

The Cauchy stress tensor σ has non-vanishing components σxx , σyy, σzz and
σxz , which due to the decomposition (6.12) on p. 174 are defined in terms of the
components of the deviatoric stress S and the mean pressure p by

σxx = Sxx − p, σyy = Syy − p, σzz = Szz − p, σxz = Sxz . (8.3)

The horizontal and vertical momentum balances, in the absence of inertia forces
and due to negligibly small Reynolds numbers in typical polar ice sheet flows, are
expressed by the equations of equilibrium under gravity

∂Sxx
∂x

+ ∂Sxz
∂z

− ∂ p

∂x
= 0, (8.4)

∂Sxz
∂x

+ ∂Szz
∂z

− ∂ p

∂z
= �g, (8.5)

where � is the ice density and g is the gravitational acceleration.
The mass and momentum balance equations (8.2), (8.4) and (8.5) are subject to

boundary conditions at the free surface and the base of an ice sheet, expressing the
interactions of a glacier with the atmosphere and the underlying bedrock. Let us
define the unit outward normal and tangent vectors n and s in a right-hand sense, as
shown in Fig. 8.1. Then, at the free surface h(x), the position of which is in general
unknown, the unit vectors have components given by

n = �−1
h [−h′(x), 0, 1], s = �−1

h [1, 0, h′(x)], (8.6)
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where
�h = {1 + [h′(x)]2}1/2, (8.7)

with the primes denoting spatial derivatives. The zero traction condition at z = h(x)
is conveniently expressed in terms of vanishing normal and tangential tractions,
tn = n · σn and ts = s · σn, in the Oxz plane. Hence,

z = h(x) : �2
htn = −�2

h p + [h′(x)]2Sxx + Szz − 2h′(x)Sxz = 0, (8.8)

z = h(x) : �2
hts = h′(x)(Szz − Sxx ) + {1 − [h′(x)]2}Sxz = 0. (8.9)

The prescription of the mass flux across the free surface due to ice accumulation or
ablation yields the kinematic condition in the form

z = h(x) : h′(x)u − w = �hq, (8.10)

where q denotes the ice accumulation rate.
At the prescribed bed z = f (x), the unit vectors n and s have components given

by
n = �−1

f [ f ′(x), 0, −1], s = �−1
f [−1, 0, − f ′(x)], (8.11)

where
� f = {1 + [ f ′(x)]2}1/2. (8.12)

With (8.11) and (8.12), normal and tangential tractions at the prescribed bed z =
f (x), tn and ts , respectively, are expressed by

z = f (x) : �2
f tn = −�2

f p + [ f ′(x)]2Sxx + Szz − 2 f ′(x)Sxz, (8.13)

z = f (x) : �2
f ts = f ′(x)(Szz − Sxx ) + {1 − [ f ′(x)]2}Sxz0, (8.14)

and normal and tangential velocities at the bed, vn and vs , respectively, are

z = f (x) : � f vn = f ′(x)u − w, � f vs = −u − f ′(x)w. (8.15)

The kinematic condition defining the normal basal mass flux due to ice melt
(drainage) or refreezing is given by

z = f (x) : f ′(x)u − w = � f b, (8.16)

with b denoting the basal melt rate.
At the glacier bed either no-slip or sliding can occur. In the former case of no

sliding, the ice particle velocity component which is tangential to the surface f (x)
is zero; that is, vs = 0. This, in view of (8.15)2, provides the relation

u + f ′(x)w = 0. (8.17)
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In the case of basal sliding, the tangential traction ts at z = f (x) is related to the
tangential velocity vs and the normal pressure p = −tn by a sliding law. A linear
form of the latter law is adopted

z = f (x) : ts = λ tnvs, (8.18)

where λ is a constant friction coefficient. The proportionality of ts to tn ensures that,
as an ice sheet margin XM is approached and the pressure decreases to zero, the
free surface slope h′(XM) at the margin is bounded (Morland and Johnson 1980).
Otherwise, in the case of no-slip basal conditions, the slope at the margin would be
unbounded.

Themass conservation balance (8.2) and the equilibrium equations (8.4) and (8.5),
subject to relevant initial and boundary conditions, have to be supplemented by a flow
law describing the viscous creep of anisotropic ice. For the constitutive description
of the material, the phenomenological constitutive equations formulated in Chap. 7
are used, which can be generalized by the form

S = 2μ0H(D, B, M(r)) (r = 1, 2, 3). (8.19)

In the above relation, the isotropic ice viscosity μ0 is assumed to be a function of
temperature and stress/strain-rate invariant, as described by Eqs. (7.44)–(7.48) in
Sect. 7.3. The class of anisotropic flow laws (8.19), apart from the common depen-
dence of the deviatoric stress S on the strain-rate D, also incorporates the dependence
on the strain measure B, the left Cauchy-Green tensor. Since B, as defined by (7.9)
on p. 223, depends on the deformation gradient F, we need to follow the evolution of
F along ice particle paths, as ice deforms and develops anisotropy during its passage
from the free surface to depth in an ice sheet. In a plane flow considered here, the
deformation gradient has five non-zero components: Fxx , Fyy = 1, Fzz , Fxz and Fzx .
By (7.9), the non-zero components of the tensor B are expressed by

Bxx =F2
xx + F2

xz, Byy = 1, Bzz = F2
zx + F2

zz,

Bxz = Bzx = Fxx Fzx + Fxz Fzz .
(8.20)

The evolution of the components Fi j is described by the kinematic relation (7.12),
involving the velocity gradient L. The non-zero components of the latter, defined by
(7.13), are

Lxx = ∂u

∂x
, Lzz = ∂w

∂z
, Lxz = ∂u

∂z
, Lzx = ∂w

∂x
. (8.21)

Accordingly, (7.12) provides four first-order differential equations for non-trivial
components of F as follows:

∂Fi j
∂t

+ vk
∂Fi j
∂xk

= Fkj
∂vi

∂xk
(i, j, k = 1, 3), (8.22)
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with the equivalence x1 = x , x3 = z, v1 = u, v3 = w. Due to the ice incompres-
sibility constraint det F = 1, only three evolution equations (8.22) are independent.
The latter equations must be solved together with the mass balance relation (8.2) and
the equilibrium equations (8.4) and (8.5), and are subject to the condition F = I at
the part of the free surface where the ice accumulation (q > 0) occurs, and where,
initially isotropic, individual ice elements enter the ice sheet body.

8.1.2 Scaled Equations

In order to solve the mass conservation and equilibrium equations (8.2), (8.4) and
(8.5), combined with the adopted constitutive law (8.19), two-step scaling is per-
formed. First, physical dimensions are eliminated from the equations by using typ-
ical magnitudes of quantities involved, and, in the second step, the horizontal coor-
dinates and velocities are stretched in such a way that both, lateral and vertical,
coordinates and velocity components become order unity variables. This enables
proper estimation of relative magnitudes of all terms entering the flow problem
equations, so that those terms which are less important than other can be elimi-
nated from the analysis to simplify the calculations. Hence, we adopt characteristic
magnitudes: h∗, a typical ice thickness, used as a length scale, and v∗, a typical accu-
mulation rate, used as a velocity unit. These two characteristic quantities determine
other scaling parameters: a stress unit τ ∗ = �gh∗, a strain-rate unit D∗ = v∗/h∗,
a time scale t∗ = h∗/v∗ = 1/D∗, and a viscosity unitμ∗ = τ ∗h∗/v∗. By applying the
adopted scales, we introduce dimensionless variables, indicated by a superposed bar,
defined by

(x̄, z̄) = (x, z)/h∗, (ū, w̄) = (u, w)/v∗, (S̄, p̄) = (S, p)/τ ∗,

(L̄, D̄) = (L, D)/D∗, t̄ = t/t∗, μ̄0 = μ0/μ
∗.

(8.23)

Then, bymeans of the small aspect ratio parameter ε, we stretch the lateral coordinate
x̄ and the velocity ū, while leaving the vertical counterparts unchanged, to obtain

X = εx̄, Z = z̄, U = εū, W = w̄. (8.24)

This results in X , Z ,U andW all being order unity.We also introduce the normalized
free surface andbedprofiles, H(X) = h/h∗ and F(X) = f/h∗ respectively, together
with their corresponding slopes H ′(X) = Γ (X) and F ′(X) = β(X), all being order
unity variables as well. In terms of the normalized stresses and strain-rates, the
constitutive law (8.19) takes the dimensionless form

S̄ = 2μ̄0H( D̄, B, M(r)). (8.25)
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The components of the dimensionless stress S̄ can be rescaled by using the small
parameter ε to give

S̄xx = εΣxx , S̄zz = εΣzz, S̄xz = εΣxz, p̄ = P, (8.26)

so that Σi j are (at most) order unity components of a normalized deviatoric stress
tensor Σ , and P is order unity normalized pressure.

Application of the above scalings transforms the mass balance relation (8.2) to

∂U

∂X
+ ∂W

∂Z
= 0, (8.27)

while the equilibrium equations (8.4) and (8.5) become

ε
∂Σxx

∂X
+ ∂Σxz

∂Z
− ∂P

∂X
= 0, (8.28)

ε2
∂Σxz

∂X
+ ε

∂Σzz

∂Z
− ∂P

∂Z
= 1, (8.29)

where all the derivatives involved are order unity. In normalized stretched variables,
the zero free surface tractions (8.8) and (8.9) are expressed by

Z = H(X) : −�2
h P + εΣzz − 2ε2Γ Σxz + ε3Γ 2Σxx = 0, (8.30)

Z = H(X) : (1 − ε2Γ 2)Σxz + εΓ (Σzz − Σxx ) = 0, (8.31)

and the free surface kinematic condition (8.10) takes the form

Z = H(X) : ΓU − W = �hQ, (8.32)

where Q = q/v∗ is a normalized ice accumulation rate. Similarly, the scaled relations
for the basal normal and tangential tractions, (8.13) and (8.14), are given by

Z = F(X) : �2
f Tn = −�2

f P + εΣzz − 2ε2βΣxz + ε3β2Σxx , (8.33)

Z = F(X) : �2
f Ts = (1 − ε2β2)Σxz + εβ(Σzz − Σxx ), (8.34)

where Tn = tn/τ ∗ and Ts = ε−1ts/τ ∗ are scaled basal tractions, both being order
unity variables. The normal and tangential basal velocities, given by (8.15), are

Z = F(X) : � f Vn = βU − W, � f Vs = −U − ε2βW, (8.35)

where Vn = vn/v
∗ and Vs = εvs/v

∗ denote order unity components of the basal
velocity vector. The kinematic condition at the bed, (8.16), becomes

Z = F(X) : βU − W = � f B, (8.36)
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where B = b/v∗ is a normalized basal melt rate. The expressions for �h and � f ,
see (8.7) and (8.12), now have the forms

�h = (
1 + ε2Γ 2)1/2 , � f = (

1 + ε2β2)1/2 . (8.37)

Further, the sliding law, in physical variables defined by (8.18), in the normalized
dimensionless form is expressed by

Ts = Λ TnVs , (8.38)

where Λ = ε−2v∗λ is an order unity or greater normalized basal friction coefficient,
the basal tractions Tn and Ts are defined by (8.33) and (8.34), and the basal velocity
Vs is given by (8.35)2.

Finally, the constitutive law (8.25) needs its arguments to be expressed in the
scaled variables either, which requires the strain-rate components (8.1) to be defined
in terms of the stretched coordinates and velocities (8.24). Hence, we have

D̄xx = ∂U

∂X
, D̄zz = ∂W

∂Z
, D̄xz = 1

2

(
ε−1 ∂U

∂Z
+ ε

∂W

∂X

)
, (8.39)

showing that the dominant strain-rate component, of order ε−1, is D̄xz , with the
other two components, D̄xx and D̄zz , being order unity. In addition, also the velocity
gradient components (8.21) need to be expressed in the scaled variables in order to
solve the deformation gradient evolution equations (8.22) along ice particle paths.
These components are given by

L̄ xx = ∂U

∂X
, L̄ zz = ∂W

∂Z
, L̄ xz = ε−1 ∂U

∂Z
, L̄ zx = ε

∂W

∂X
. (8.40)

The deformation gradient components, entering the evolution equations (8.22), are
expressed in the stretched coordinates as

Fxx = ∂X

∂X∗ , Fzz = ∂Z

∂Z∗ , Fxz = ε−1 ∂X

∂Z∗ , Fzx = ε
∂Z

∂X∗ , (8.41)

where X∗ and Z∗ are the stretched normalized reference coordinates, related to their
physical counterparts by the scalings analogous to (8.23) and (8.24).

Since the dominant normalized strain-rate, D̄xz , is of order ε−1, and the corre-
sponding normalized stress S̄xz is of order ε (this can be seen from Eq. (8.26)3, in
which Σxz is order unity), it follows from the constitutive law (8.25) (Staroszczyk
2004) that the viscosity μ̄0 is of order ε2. This prompts rescaling of the ice viscosity
by introducing an order unity isotropic ice viscosity μ̃0 defined by

μ̄0 = ε2μ̃0 . (8.42)
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Such a viscosity renormalization corresponds equivalently to treating ε2 as a dimen-
sionless viscosity (Morland and Johnson 1980; Morland 1984). The requirement
that μ̃0 is of order unity, on account of the scalings (8.23) and Eqs. (7.44)–(7.48)
in Sect. 7.3 expressing the physical viscosity μ0 in terms of temperature and the
strain-rate/stress invariants, yields a relation which defines the small parameter ε as

ε = 1

h∗

(
σ0v

∗

�gD0

)1/2

. (8.43)

Choosing typical magnitudes of the ice sheet thickness as h∗ = 2000 m and the ice
accumulation rate as v∗ = 1myr−1 = 3.17 × 10−8 m s−1 (the unit ‘yr’ denotes a
year), relation (8.43) gives ε = 0.00167 ∼ 1/600 (the units σ0 and D0 are defined
in Sect. 7.3, and the ice density ρ = 917 kgm−3).

The ice sheet flow governing equations (8.27)–(8.29), combined with the defor-
mation gradient evolution equations (8.22), describe the problem in terms of the
set of dimensionless quantities and the small parameter ε � 1. In this section, con-
cerned with the plane flow problem, the governing equations are solved in their full
forms by applying a discrete approach, based on the finite-element method. In the
following Sect. 8.2, dealing with the axially-symmetric ice sheet flow, the solution
is constructed as a leading-order approximation, derived by neglecting in the flow
equations all the termswhich are of order ε or smaller compared to unity. The ensuing
leading-order equations are solved by first integrating them through the ice thick-
ness to eliminate one spatial coordinate, and then by calculating the ice sheet free
surface profile and the velocity and stress fields by applying a numerical method for
integration of a system of differential equations.

Two forms of the constitutive laws are used here in the plane ice sheet flow
models: (1) the multiplicative form (7.43) on p. 229 and (2) the additive form (7.170)
on p. 267 employed to describe the mechanism of dynamic recrystallization of ice.
By expressing the flow law (7.43) in the normalized variables, as prescribed by the
general representation (8.25), one obtains the following relations for the deviatoric
stresses given in terms of the velocities:

Σxx = μ̃0

[
a1ε

∂U

∂X
+ a3

(
∂U

∂Z
+ ε2

∂W

∂X

)]
,

Σzz = μ̃0

[
a2ε

∂W

∂Z
+ a3

(
∂U

∂Z
+ ε2

∂W

∂X

)]
,

Σxz = μ̃0 a4

(
∂U

∂Z
+ ε2

∂W

∂X

)
,

(8.44)

where the coefficients depending on the fabric response functions f (b) and G(K )

are given by
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a1 = 2

3

[
f (b1)

(
1 + M (1)

11

)
+ f (b3)

(
1 + M (3)

11

)
+ K−1G(K ) (2Bxx + Bzz)

]
,

a2 = 2

3

[
f (b1)

(
1 + M (1)

33

)
+ f (b3)

(
1 + M (3)

33

)
+ K−1G(K ) (Bxx + 2Bzz)

]
,

a3 = 1

3

[
f (b1)M

(1)
13 + f (b3)M

(3)
13 + K−1G(K )Bxz

]
,

a4 = 1

2

[
f (b1) + f (b3) + K−1G(K )

(
Bxx + Bzz

)]
.

In the initial undeformed state, when B = I , so that b1 = b2 = b3 = 1 and K = 3,
on account of the normalization relation (7.39)2, the above four coefficients become

a1 = a2 = 2, a3 = 0, a4 = 1, (8.45)

and relations (8.44) reduce to the isotropic ice viscous flow relations

Σxx = 2μ̃0ε
∂U

∂X
, Σzz = 2μ̃0ε

∂W

∂Z
, Σxz = μ̃0

(
∂U

∂Z
+ ε2

∂W

∂X

)
, (8.46)

confirming a result known from the SIA theory that, to the leading order, the normal-
ized axial deviatoric stressesΣxx andΣzz are order ε quantities, while the normalized
shear stress Σxz is order unity.

Similarly, the additive constitutive equations (7.170), when expressed in the nor-
malized variables, give the following deviatoric stress components:

Σxx = μ̃0

[
(2 + c1) ε

∂U

∂X
+ c3

(
∂U

∂Z
+ ε2

∂W

∂X

)]
,

Σzz = μ̃0

[
(2 + c2) ε

∂W

∂Z
+ c3

(
∂U

∂Z
+ ε2

∂W

∂X

)]
,

Σxz = μ̃0 (1 + c4)

(
∂U

∂Z
+ ε2

∂W

∂X

)
,

(8.47)

where the coefficients depending on the fabric response functions f̃ (b) and G̃(K )

are defined by

c1 = 2

3
r( Ī )

[
f̃ (b1)

(
1 + M (1)

11

)
+ f̃ (b3)

(
1 + M (3)

11

)
+ K−1G̃(K ) (2Bxx + Bzz)

]
,

c2 = 2

3
r( Ī )

[
f̃ (b1)

(
1 + M (1)

33

)
+ f̃ (b3)

(
1 + M (3)

33

)
+ K−1G̃(K ) (Bxx + 2Bzz)

]
,

c3 = 1

3
r( Ī )

[
f̃ (b1)M

(1)
13 + f̃ (b3)M

(3)
13 + K−1G̃(K )Bxz

]
,

c4 = 1

2
r( Ī )

[
f̃ (b1) + f̃ (b3) + K−1G̃(K )

(
Bxx + Bzz

)]
.
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Recall that r( Ī ) is the ice fabric strength scaling factor defined by equation (7.153)
on p. 261, see also Fig. 7.19. In the initial undeformed state, given by B = I , all four
coefficients ci become zero, regardless of the value of the scaling factor r( Ī ). These
coefficients are also zero for r = 0; that is, for the effective strain-rate invariant Ī
exceeding its upper critical level Īcu , after the dynamic recrystallization process has
been completed. In either case, formulae (8.47) reduce to the isotropic viscous fluid
flow relations (8.46) again.

8.1.3 Finite-Element Model

The flow problem defined by the ice incompressibility condition (8.27) and the
equilibrium equations (8.28) and (8.29), with the deviatoric stress tensor components
given by either (8.44) for the multiplicative, or (8.47) for the additive form of the
constitutive law, is solved for the normalized velocities U and W and pressure P
by employing a finite-element method (FEM). A weighted residual, or Galerkin,
approach is adopted (Zienkiewicz et al. 2005b) in which the problem equations are
satisfied in an integral mean sense. The plane domain bounded by the ice sheet
free surface H(X) and the ice–bedrock interface F(X) is discretized by a mesh
of triangular finite elements. Since in the ensuing equilibrium equations the spatial
derivatives of the velocity functions U and W are by one order higher than the
derivatives of the pressure function P , for numerical reasons, the velocity field is
approximated by applying polynomial interpolation (shape) functions which are by
one order higher than those for the pressure field. Accordingly, six-node elements are
adopted, with three nodes at the vertices and three nodes at the mid-side points, see
Fig. 8.2. The unknown values of the discrete velocities,Uj andWj , are defined at all
six nodal points, while the discrete values of the pressure field, Pk , are defined only at
the three vertices. Therefore, in each finite element there are 15 discrete parameters
to be calculated. In terms of the nodal parameters, the continuous functions U , W
and P are approximated by the representations

Fig. 8.2 A triangular finite
element with six nodes
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U (X, Z) = Φv
j (X, Z)Uj ,

W (X, Z) = Φv
j (X, Z)Wj , ( j = 1, . . . , 6),

P(X, Z) = Φ
p
k (X, Z) Pk , (k = 1, 3, 5),

(8.48)

where the summation convention over repeated indices applies. The shape (interpo-
lation) functionsΦv

j andΦ
p
k are assumed to be different for the velocity and pressure

fields: the velocities are approximated by bi-quadratic shape functions, whereas the
pressure field is approximated by bi-linear shape functions. Standard polynomial
forms of these functions (Zienkiewicz et al. 2005b) are adopted in the model.

In the weighted residual method, the problem governing equations are solved
in their weak forms. Hence, the mass balance and equilibrium equations are first
multiplied by a set of continuous and sufficiently smooth weighting functions, which
in the Galerkin method are identical to the element shape functions, hereΦv

j andΦ
p
k .

The resulting relations are then integrated over the whole ice sheet domain, with the
aim to minimize the error of the approximate solution. In the process, to reduce the
order of spatial derivatives, Green’s theorem is used. This transforms the problem to
the solution of a set of algebraic equations, which in a matrix form is expressed by

Kw = f , (8.49)

where the vector w includes the unknown values of the velocities Ul and Wl and the
pressures Pl at all nodal points l of the discrete system. For a single element, with
15 degrees of freedom, the element nodal parameters are assumed to be arranged in
the following order

we = (P1,U1,W1,U2,W2, P3,U3,W3,U4,W4, P5,U5,W5,U6,W6)
T . (8.50)

The global matrix K and the forcing vector f are assembled from respective single
element matrices and vectors, K e and f e respectively, in a manner typical of the
finite-element method. The element matrices K e, each 15 × 15 in size, are, in turn,
composed of 9 submatrices krs (r, s = 1, 2, 3), each of dimensions 5 × 5. Similarly,
the element vectors f e, of the same structure as the vectorwe in (8.50), aremade up of
three vectors f r , each of length 5. With the ordering of the nodal parameters defined
by (8.50), the non-vanishing entries in the components matrices krs and vectors f r ,
for the multiplicative constitutive law (7.43) and hence the stresses expressed by
(8.44), are defined by the integrals

krs1, 2n =
∫
A

Φ
p
2r−1

∂Φv
j

∂X
dA, krs1, 2n+1 =

∫
A

Φ
p
2r−1

∂Φv
j

∂Z
dA,

krs2m, 1 = −
∫
A

∂Φv
i

∂X
Φ

p
2s−1 dA, krs2m+1, 1 = −

∫
A

∂Φv
i

∂Z
Φ

p
2s−1 dA,
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krs2m, 2n = μ̃0

∫
A

(
ε2a1

∂Φv
i

∂X

∂Φv
j

∂X
+ εa3

∂Φv
i

∂X

∂Φv
j

∂Z
+ a4

∂Φv
i

∂Z

∂Φv
j

∂Z

)
dA,

krs2m, 2n+1 = μ̃0

∫
A

(
ε3a3

∂Φv
i

∂X

∂Φv
j

∂X
+ ε2a4

∂Φv
i

∂Z

∂Φv
j

∂X

)
dA, (8.51)

krs2m+1, 2n = μ̃0

∫
A

(
εa3

∂Φv
i

∂Z

∂Φv
j

∂Z
+ ε2a4

∂Φv
i

∂X

∂Φv
j

∂Z

)
dA,

krs2m+1, 2n+1 = μ̃0

∫
A

(
ε2a2

∂Φv
i

∂Z

∂Φv
j

∂Z
+ ε3a3

∂Φv
i

∂Z

∂Φv
j

∂X
+ ε4a4

∂Φv
i

∂X

∂Φv
j

∂X

)
dA,

f r2m+1 = −
∫
A

Φv
i dA,

where

r, s = 1, 2, 3; m, n = 1, 2; i = 2(r − 1) + m, j = 2(s − 1) + n,

and A denotes the plane domain of integration within a given triangular element. The
analogous relations for the additive constitutive law (7.170), for which the stresses
are given by (8.47), are obtained by replacing the coefficients a1, a2, a3 and a4 in
(8.51) by their counterparts (c1 + 2), (c2 + 2), c3 and (c4 + 1), respectively.

The surface integrals prescribed by (8.51) are evaluated numerically by applying
the Gauss-Legendre quadrature with seven sampling points within a triangular ele-
ment (Zienkiewicz et al. 2005b). Simultaneously with the finite-element equations
forU ,W and P , four first-order differential equations (8.22) describing the evolution
of the deformation gradient F are solved to determine the anisotropic fabric associ-
ated with the current deformation field. The continuous functions Fxx , Fxz , Fzx and
Fzz are approximated within finite elements in the same way as the pressures field
P . That is, bi-linear interpolation of discrete values given at the three vertex nodal
points is applied, so that the variation of the deformation gradient components is
described by relations analogous to (8.48)3.

The finite-element model described above was used to simulate plane, steady in
timeflowof anisotropic ice over a horizontal bed.Tofinda steady solution, an iterative
algorithmwas used. In this algorithm, the calculations are started by assuming that ice
is isotropic throughout an ice sheet; that is, F = I everywhere. As an initial isotropic
ice flow solution, the velocities and pressures predicted by the SIA method are used.
Starting from this initial state (which is slightly unbalanced due to the approximate
nature of the SIA solution), new ice velocities are calculated by solving the FEM
equations, and these results are used to determine the velocity gradient components
Li j . The latter are necessary to evaluate new deformation gradient components Fi j
by solving the evolution equation (8.22). The updated deformation gradients are
then used to calculate the values and directions of the principal stretches λ1 and λ3
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(λ2 = 1) defining the current ice fabric, which, in turn, enables the evaluation of
the response coefficients in the constitutive laws. After completing the above steps,
a new iteration is started, in which the FEM equations are solved to provide new
velocities that are used again to update the fabric and the response coefficients, etc.
Thewhole iteration process as described above is continued until a stationary solution
is obtained. In our simulations, depending on the choice of parameters defining the
limit strength of ice anisotropy (the specific values of the enhancement factors), the
stationary flowwas usually reached for the values of the dimensionless time t̄ = t/t∗
ranging from about 0.2 to about 0.3.

The ice incompressibility constraint (8.27), expressing the mass conservation
balance, requires special numerical treatment, since the absence of a pressure term
in (8.27), in combination with equilibrium equations (8.28) and (8.29), gives rise to
an ill-conditioned system of algebraic equations that are solved in the finite-element
method. A number of approaches have been developed and used in practice to resolve
the above numerical problem associated with the incompressibility of the medium.
It appears that the first such an approach was proposed by Chorin (1967), and is
known as the pseudo-incompressibility method. In this method, a compressibility
term in the form of a pressure time-derivative is added to relation (8.27), and when a
steady state is reached, this artificial term vanishes. In an alternative approach, a so-
called pressure correction method (Hirsch 1992), an iterative procedure between the
velocity and pressure fields is applied, in which themomentum balance equations are
solved togetherwith aPoisson equation for the pressure correction term that is derived
by taking the divergence of the momentum equations. In incompressible elasticity
and plasticity two other methods are often used (Zienkiewicz et al. 2005b). One is
the standard penalty method, in which a pressure term times some small penalty
parameter is inserted in the incompressibility relation. The other method, which
can be viewed as an extension of the penalty method, consists in subtracting from
both sides of the incompressibility relation (8.27) a pressure term times some small
parameter. The resulting system of the momentum and modified mass conservation
equations is then solved by iterations, in which the initially adopted pressure is
gradually updated until the stationary solution is found. It seems that nowadays the
most common approach to solving the problems involving incompressible materials
is a projection method, known in computational fluid mechanics as a fractional step
method (Zienkiewicz et al. 2005a). In this method, at each computational time step,
the velocity field is first calculated without enforcing incompressibility, and then
the intermediate velocity field is projected onto a divergent-free space to satisfy
the incompressibility constraint (Chorin 1968); the latter requires the solution of a
Poisson equation for the pressure field. It is likely that the projectionmethod was first
introduced to the field of theoretical glaciology by Mangeney et al. (1996). In the
finite-element model presented here, two methods have been applied: the pseudo-
incompressibility method and the penalty method.
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8.1.4 Numerical Flow Simulations

The finite-element model described in Sect. 8.1.3 is a general-purpose model that
can be used to solve numerically a wide class of problems involving the viscous
flow of a large polar ice sheet, provided that the ice deformation can be treated as
occurring in plane flow conditions. Hence, steady or unsteady flows can be simulated
in which the anisotropy of ice evolves, with possible non-linear effects, such as the
dependence of ice viscosity on current strain-rate or stress, incorporated in themodel.
Here, however, the model is applied to solve a flow problem of a simple, idealized
geometry, in order to demonstrate how the mechanism of induced anisotropy affects
the flow of ice (in particular, the velocities within an ice sheet) compared to the case
of isotropic ice flow.

Accordingly, a steady flow of an ice sheet with a prescribed geometry is consid-
ered, for which the velocity depth profiles and the free surface accumulation rates
necessary tomaintain the steady-state flow are calculated. It is assumed for simplicity
that the ice flows over a flat horizontal bed F(X) = 0, and the free surface elevation
H(X) is given by the equation

H + X2 = 1. (8.52)

Thus, the ice divide is at X = 0 and the margin is at X = 1, so that the lateral
span of the glacier, L , is equal to unity in the stretched normalized coordinates. It
is also assumed that the ice sheet free surface profile is symmetric about the plane
X = 0, and therefore the considerations are restricted to the region 0 ≤ X ≤ 1. The
simulationswere carried out for the small aspect ratio parameter ε = 10−2. At the bed
Z = 0 no-slip conditions are assumed, with zero melt rate (B = 0). These, together
with the flow symmetry conditions at the divide X = 0, are expressed by

Z = 0 : U = W = 0; X = 0 : U = 0,
∂W

∂Z
= 0. (8.53)

All the results discussed belowwere obtained by running a discrete model consisting
of 6414 six-node triangular elements shown in Fig. 8.2, with a total number of 29 376
degrees of freedom in the discrete system.

As first, the results of simulations of an isothermal ice flow, with the viscous
response of ice defined by the multiplicative constitutive relation (7.43) on p. 229,
are presented. These results were obtained for the constant normalized viscosity
μ̃0 = 1, with no dependence on temperature and strain-rate or stress invariants. The
fabric response functions were adopted in the form defined by (7.76) on p. 236, with
the parameter m = 2.

Figure 8.3 illustrates how the overall flow rate of an ice sheet depends on the limit
viscous properties of anisotropic ice, defined by the magnitudes of the axial and
shear enhancement factors, Ea and Es , respectively. The plots show the variation
of the horizontal and vertical velocities at the free surface, Us and Ws , and the
accumulation rate Q (given by (8.32)) required to maintain the ice sheet geometry
prescribed by (8.52). The symbols A and S denote here the limit viscosity factors
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Fig. 8.3 a Free surface horizontal velocities Us , b vertical velocities Ws , and c the accumulation
rates Q, for different combinations of the limit viscosity factors A = 1/Ea and S = 1/Es . Reprinted
from Staroszczyk and Morland (2000), Fig. 4, with permission of the International Glaciological
Society

for compression and shear respectively, equal to the reciprocals of the respective
enhancement factors Ea and Es ; that is, A = 1/Ea and S = 1/Es . It can be noted
that the effect on the global flow of the parameter describing the behaviour of ice
in compression is very limited. Comparison of the results obtained for A = 3 and
S = 0.2 (dashed lines) with the results for A = 10 and the same S (dotted lines)
shows that the differences between the free surface velocities are small and essentially
confined to the zone of positive ice accumulation Q. On the contrary, it is seen in the
plots that the significance of the shear enhancement is crucial, as the change in its
value considerably changes the global ice sheet flow-rate. Comparison of the results
obtained for the values A = 3 and S = 0.2 (Es = 5), dashed lines, with those for
A = 3 and S = 0.4 (Es = 2.5), dashed-dotted lines, indicates that both horizontal
and vertical velocities, over practically the whole span of the ice sheet, are in the
former case about twice as large as in the latter case. That is, the global flow-rate
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Fig. 8.4 Variation of the
free surface horizontal
velocity Us with increasing
shear enhancement factor Es
at different locations X/L
(for the axial enhancement
factor Ea = 1/3). Reprinted
from Staroszczyk and
Morland (2000), Fig. 5, with
permission of the
International Glaciological
Society
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of ice is approximately proportional to the magnitude of the shear enhancement
factor Es .

The observations from the previous figure are confirmed by the results shown
in Fig. 8.4, illustrating how the free surface horizontal velocity, Us , obtained for
anisotropic ice (Es > 1) increases with respect to the corresponding velocity for
isotropic ice (Es = 1); the results were obtained for the axial enhancement factor
Ea = 1/3. The horizontal velocity ratio is plotted against the value of the enhance-
ment factor Es for different locations X/L indicated in the figure. It can be seen that
at locations distant from the ice divide X = 0, curves for X/L = 0.4 and X/L = 0.6,
the increase in the flow velocity Us is almost exactly proportional to the magnitude
of the shear enhancement factor. Only near the ice divide, curves for X/L = 0.1 and
X/L = 0.2, is the increase slightly smaller. Such a feature of the ice sheet viscous
behaviour can be explained by the fact that in the near-divide region both axial and
shear deviatoric stresses are of comparable magnitudes, whereas in the regions far
from the divide the shear stresses increase steadily (they are approximately propor-
tional to the free surface slope), so that the viscous flow of ice becomes increasingly
dominated by the shear stresses.

The plots in Fig. 8.5 display depth profiles of the horizontal and vertical velocities
at different locations X/L , indicated by the respective labels in the figure. Compared
are the results calculated for anisotropic ice, defined by the parameters Ea = 1/3
and Es = 5 pertinent to cold ice, and for isotropic ice, Ea = Es = 1. The velocities
are normalized by respective values at the free surface Z = H ; that is, the ratios
U (X, Z)/Us(X) and W (X, Z)/Ws(X) are plotted against the normalized elevation
Z/H . One can see that the depth profiles of the horizontal velocities (Fig. 8.5a)
obtained for anisotropic ice varywith X , in contrast to the isotropic ice flow forwhich
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Fig. 8.5 a Depth profiles of the normalized horizontal and b vertical velocities at different loca-
tions X/L for anisotropic ice (lines) and isotropic ice (symbols). Reprinted from Staroszczyk and
Morland (2000), Fig. 6, with permission of the International Glaciological Society

the normalizedvelocity profile (indicatedby circles) is common for all locations X/L .
The latter velocity pattern for isotropic ice flow differs slightly from those predicted
by the models in which Glen’s creep flow law (3.15) on p. 39, with the exponent
n = 3, was used (Dahl-Jensen 1989; Hvidberg 1996). This discrepancy between the
results is due to the assumption of the constant (independent of stress) isotropic
ice viscosity adopted here. The plots in Fig. 8.5a show that the most significant
differences between the horizontal velocities calculated for anisotropic and isotropic
ice occur in the near-divide region, whereas for X/L � 0.6 the respective profiles for
both cases coincide. As regards the vertical velocity profiles presented in Fig. 8.5b,
a more complicated pattern is observed, in which the depth profiles for not only
anisotropic, but also isotropic ice, vary with X/L; for the sake of clarity only the
profiles for the divide X/L = 0 (circles) and X/L = 0.6 (triangles) are plotted for
the isotropic case. The largest discrepancies between the velocities for both types of
ice occur, as in the case of the horizontal velocities, in the vicinity of the ice divide at
X = 0; again, the corresponding profiles for anisotropic and isotropic ice practically
coincide at locations distant from the divide. A similar property, in which the effect
of the ice anisotropy is restricted only to the near-divide region and is negligibly
small elsewhere, was also observed with regard to the depth profiles of the deviatoric
stress components (Staroszczyk and Morland 2000).

Next, the results of simulations of a polythermal ice sheet flow, with a prescribed
temperature field T (X, Z), are presented. Again, the free surface profile (8.52) was
adopted in the simulations. Compared to the above case of an isothermal ice flow,
the mechanism of dynamic recrystallization is also considered in order to investigate
its effect on the overall flow-rate of an ice sheet. Thus, the additive constitutive law
(7.170) on p. 267 is applied to describe the creep behaviour of ice. To prescribe
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Fig. 8.6 Depth profiles of temperature T and isotropic ice viscosity μ̃0

the temperature field in an ice sheet, a temperature depth profile determined for
an ice core drilled in Central Greenland (Gundestrup et al. 1993) was used. For
simplicity, it was assumed that the temperature distribution was independent of the
horizontal coordinate X , and the same temperature depth profile, when expressed in
terms of the local dimensionless elevation Z/H , was applied throughout the whole
ice sheet. The isotropic ice viscosity dependence on temperature was expressed in
terms of the rate factor a(T ), as defined by Eqs. (3.18)–(3.20) on p. 40. The adopted
depth profile of temperature T and the calculated depth profile of the viscosity μ̃0 are
illustrated in Fig. 8.6. The viscosity is presented in a normalized form μ̃0(T )/μ̃0(Tav),
where Tav = −27.9 ◦C is an average temperature along the vertical profile; that is,
μ̃0(Tav) = 1. For the adopted temperature variation, the ratio of the isotropic ice
viscosity at the free surface Z = H to that at the bed Z = 0 is equal to about 33.4.

The magnitudes of the critical effective strain-rate invariant Īc, a free parameter in
the adopted constitutive model which defines the onset of dynamic recrystallization,
was chosen in such a way that the maximum thicknesses (occurring at X/L ∼ 0.6
for the assumed ice sheet geometry) of the recrystallized ice are equal, respectively,
to about 0.025, 0.05, and 0.075 of the normalized ice depth H(X). The other free
parameter of the constitutive model (7.170), δ, which determines the rate of the
recrystallization process, was assumed as 0.2.

Figure 8.7 illustrates the depth profiles of the horizontal and vertical velocity
components, U and W , at different locations X/L . The labels (1), (2) and (3) in the
plots refer to the above three values 0.025, 0.05 and 0.075 of the normalized ice
depth. The velocities are normalized by the respective free surface values Us and
Ws , and are plotted against the normalized elevation Z/H . It is seen in the plots
that in the vicinity of the ice divide (plots for X/L = 0.2) and near the ice sheet
margin (plots for X/L = 0.8) the flow patterns are little affected by the mechanism
of dynamic recrystallization. In particular, this observation applies to the normalized
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Fig. 8.7 Depth profiles of the normalized horizontal and vertical velocities at different locations
X/L for different values of the critical strain-rate invariant Īc. The dotted lines show the results
for isotropic ice with no dynamic recrystallization involved. Reprinted from Staroszczyk (2003),
Fig. 2, with permission of the International Glaciological Society

horizontal velocitiesU , the depth profiles of which, even in the middle part of the ice
sheet (X/L ∼ 0.5), are found to be little sensitive to the process of recrystallization
(keep in mind, however, that the absolute velocity magnitudes do differ from each
other). On the contrary, the normalized vertical velocity profiles in the middle part of
the glacier are strongly influenced by the presence of the underlying recrystallized
(isotropic) ice near the base. Specifically, significant changes in the flow pattern are
seen in the lower part of the ice sheet (Z/H � 1/3).

Finally, Fig. 8.8 presents the variation of the shear strain-rates for different flow
regimes at two locations X/L in themiddle part of the ice sheet, and shows the values
of εD̄xz as functions of the relative elevation Z/H . Now the label (1) indicates the
isotropic ice response, while the labels (2), (3) and (4) refer, in turn, to the values
0.025, 0.05 and 0.075 of the normalized ice thickness at which recrystallization
starts. One can see that the magnitudes of the strain-rates undergo abrupt changes in
the thin transition layer separating the recrystallized ice from the overlying strongly
anisotropic ice. We can also note that with increasing thickness of the bottom layer
of the recrystallized ice the shear strain-rates in this layer decrease and approach the
values occurring in the isotropic ice flowwith no dynamic recrystallization occurring
(see the dashed-dotted lines in the plots).
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Fig. 8.8 Depth profiles of the normalized shear strain-rate εD̄xz at two locations X/L for different
values of the critical strain-rate invariant Īc (solid lines). The dashed-dotted lines show the results
for isotropic ice with no dynamic recrystallization involved. Reprinted from Staroszczyk (2003),
Fig. 3, with permission of the International Glaciological Society

8.2 Radially-Symmetric Ice Sheet Flow

In the previous Sect. 8.1, the problem of a plane ice sheet flow is analysed. In
this section, a related problem, involving the flow of ice with evolving anisotropic
fabric is considered, in which the ice sheet geometry is axially symmetric about
the vertical axis passing through the ice divide. Hence, the problem of a gravity-
driven, steady flow of polar ice in a radially-symmetric configuration is solved. The
ice sheet is assumed to be subjected to accumulation or ablation at its free surface,
and to melting or refreezing at its base. The top surface of the glacier is treated as
traction-free, and at its base the glacier can either slide or be frozen to the underlying
bedrock. Again, for the sake of simplicity, all heat fluxes in the ice sheet and across its
boundaries are neglected, and a prescribed, constant in time, temperature distribution
in ice is adopted. The solution of the flow problem is constructed as a leading-order
approximation derived from asymptotic expansions in a small parameter ε which
reflects the small ratio of the stress and velocity gradient components in the lateral
direction of the ice sheet to those in the ice thickness direction.

8.2.1 Flow Problem Formulation

The radially-symmetric flow problem is solved in cylindrical polar coordinates
(r, θ, z), with the r -axis on the horizontal plane, and the vertical z-axis directed
upwards. It is assumed that the ice sheet geometry and all associated flow variables
are radially symmetric about the axis Oz (r = 0), so that they are independent of the
polar angle θ and, hence, are functions of only r and z. The ice sheet cross-section,
with the coordinate axes and other relevant notations, is shown in Fig. 8.9. The ice
sheet geometry is defined by the free surface elevation z = h(r) and the bed elevation
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Fig. 8.9 Axi-symmetric ice sheet geometry and coordinate axes

z = f (r). The ice sheet margin is at r = RM and the free surface elevation at the
ice divide at r = 0 is z = HD . At the free surface h(r) and at the bed surface f (r)
there are ice mass fluxes defined by the accumulation rate q and the melt rate b; their
meaning is explained in Sect. 8.1.1.

The velocity field v is described by the radial and vertical components u(r, z) and
w(r, z), respectively. The four non-vanishing components of the strain-rate tensor D
are expressed in terms of the ice velocities by

Drr = ∂u

∂r
, Dθθ = u

r
, Dzz = ∂w

∂z
, Drz = 1

2

(
∂u

∂z
+ ∂w

∂r

)
. (8.54)

The deviatoric stress tensor S has also four independent non-zero components, corre-
sponding to the strain-rate components defined by (8.54). Themass balance equation,
given by the ice incompressibility condition tr D = 0, is expressed by

∂u

∂r
+ u

r
+ ∂w

∂z
= 0. (8.55)

The horizontal radial and vertical momentum balances, in the absence of inertia
forces in the extremely slow flow considered here, are given by the relations of
equilibrium under gravity

∂Srr
∂r

+ Srr − Sθθ

r
+ ∂Srz

∂z
− ∂ p

∂r
= 0, (8.56)

∂Srz
∂r

+ Srz
r

+ ∂Szz
∂z

− ∂ p

∂z
− �g = 0, (8.57)

and the circumferential balance is identically satisfied because of the radial symmetry
of the problem.
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The mass and momentum balances expressed by Eqs. (8.55)–(8.57) are solved
with the boundary conditions which are analogous to those formulated in Sect. 8.1.1,
since essentially the same physical problem is considered, only the geometry of
the flow domain is now different, and hence different coordinates in the horizontal
plane are involved in the description. The unit normal and tangent vectors, n and
s respectively, have components defined at the free surface z = h(r) by (8.6) and
(8.7) on p. 280, and at the bed z = f (r) by (8.11) and (8.12), provided that x is
replaced by r as the argument of the functions h and f . Therefore, the boundary
conditions for the radially-symmetric flow can formally be expressed by those for
the plane flow presented in Sect. 8.1.1 by replacing Sxx by Srr and Sxz by Srz in
respective relations. Hence, the zero traction conditions at the free surface are given
by the equations analogous to (8.8) and (8.9), the expressions for the basal normal
and tangential traction components, tn and ts , are analogous to (8.13) and (8.14),
the kinematic conditions at the surfaces h(r) and f (r) are expressed by (8.10) and
(8.16), respectively, and the velocity components vn and vs at the bed are given by
(8.15). Further, the sliding law in its linear form is defined again by (8.18).

The constitutive law of the general form given by (8.19) requires the compo-
nents of the Cauchy-Green deformation tensor B expressed in the cylindrical polar
coordinates. In these coordinates, the symmetric tensor B has four non-vanishing
components involved in the ice fabric evolution relations (recall that in the plane flow
only three components, Bxx , Bzz and Brz , were required, since the fourth one, Byy,
was identically unity). These four non-vanishing components of B are determined
by the following five non-zero components of the deformation gradient tensor F

Brr =F2
rr + F2

r z, Bθθ = F2
θθ, Bzz = F2

zr + F2
zz,

Brz = Bzr = Frr Fzr + Frz Fzz,
(8.58)

with the components of F defined by relations

Frr = ∂r

∂r∗ , Fθθ = r

r∗ , Fzz = ∂z

∂z∗ , Frz = ∂r

∂z∗ , Fzr = ∂z

∂r∗ , (8.59)

where r∗ and z∗ denote the particle reference (material) coordinates. There are now
also five non-trivial components of the velocity gradient tensor L,

Lrr = ∂u

∂r
, Lθθ = u

r
, Lzz = ∂w

∂z
, Lrz = ∂u

∂z
, Lzr = ∂w

∂r
, (8.60)

so (8.22), describing the deformation gradient evolution, is equivalent to five first-
order differential equations; however, only four of them are independent due to the
ice incompressibility condition det F = 1.
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8.2.2 Scaled Equations

To solve the mass conservation and equilibrium equations (8.55)–(8.57), together
with the constitutive equation of the form (8.19) and the fabric evolution equations
(8.22), the same method as that already applied in Sect. 8.1.2 is followed. Accord-
ingly, the equations are first scaled by using the characteristic magnitudes of the
variables involved, as described by relations (8.23), with x and x̄ now being replaced
by r and r̄ , respectively. The horizontal coordinates and velocities are then stretched
by using the small parameter ε. Hence, by analogy to (8.24), we now have

R = εr̄ , Z = z̄, U = εū, W = w̄, (8.61)

where R, Z ,U andW are all order unity quantities. The small parameter ε is defined
in terms of the typical physical magnitudes by relation (8.43). The scalings result
in the dimensionless strain-rate and velocity gradient components, defined by (8.54)
and (8.60), to be expressed by

D̄rr = ∂U

∂R
, D̄θθ = U

R
, D̄zz = ∂W

∂Z
, D̄rz = 1

2

(
ε−1 ∂U

∂Z
+ ε

∂W

∂R

)
, (8.62)

L̄rr = ∂U

∂R
, L̄θθ = U

R
, L̄ zz = ∂W

∂Z
, L̄r z = ε−1 ∂U

∂Z
, L̄ zr = ε

∂W

∂R
, (8.63)

showing that the dominant components, both of order ε−1, are D̄rz and L̄r z . Similarly
to (8.26), the stress tensor components are scaled by

S̄rr = εΣrr , S̄θθ = εΣθθ, S̄zz = εΣzz, S̄r z = εΣr z, p̄ = P, (8.64)

where Σi j and P are all order unity variables. The isotropic ice viscosity is scaled
again by using (8.42), so that we deal with an order unity viscosity μ̃0 in the scaled
constitutive law.

On application of the above scalings, the mass conservation balance (8.55)
becomes

∂U

∂R
+ U

R
+ ∂W

∂Z
= 0, (8.65)

and the momentum balance equations, (8.56) and (8.57), take the forms

ε

(
∂Σrr

∂R
+ Σrr − Σθθ

R

)
+ ∂Σr z

∂Z
− ∂P

∂R
= 0, (8.66)

ε2
(

∂Σr z

∂R
+ Σr z

R

)
+ ε

∂Σzz

∂Z
− ∂P

∂Z
= 1. (8.67)
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In the normalized stretched coordinates (R, Z), the free surface elevation is
described by H(R) = h/h∗ and the bed topography by F(R) = f/h∗, and the
respective slopes areΓ (R) = H ′(R) andβ(R) = F ′(R). In terms of the latter dimen-
sionless variables, the expressions for�h and� f are given by (8.37). All the bound-
ary conditions at the surfaces H(R) and F(R) have the forms analogous to those for
the plane flow and given in Sect. 8.1.2. The expressions for the traction conditions
can be obtained by replacing the stress components Σxx and Σxz in the plane flow
by Σrr and Σr z , respectively, in the radially-symmetric flow; the stress component
Σθθ does not enter the boundary conditions. The kinematic conditions are formally
expressed in the same forms in both plane and radially-symmetric flows (bearing in
mind that now the coordinate R replaces X as the argument of the functions involved).
For reference, all the boundary conditions necessary for solving the system of Eqs.
(8.65)–(8.67) are given below. Accordingly, the zero traction conditions at the free
surface Z = H(R), when expressed in the normalized stretched coordinates, are
defined by

Z = H(R) : −�2
h P + εΣzz − 2ε2Γ Σr z + ε3Γ 2Σrr = 0, (8.68)

Z = H(R) : (1 − ε2Γ 2)Σr z + εΓ (Σzz − Σrr ) = 0, (8.69)

and the kinematic condition at the free surface is

Z = H(R) : Γ (R)U − W = �hQ, (8.70)

where Q(R) is a normalized accumulation rate. Similarly, the scaled relations for
the basal normal and tangential tractions, Tn and Ts , are defined by

Z = F(R) : �2
f Tn = −�2

f P + εΣzz − 2ε2βΣr z + ε3β2Σrr , (8.71)

Z = F(R) : �2
f Ts = (1 − ε2β2)Σr z + εβ(Σzz − Σrr ). (8.72)

Further, the normal and tangential components of the basal velocity, Vn and Vs , are

Z = F(R) : � f Vn = β(R)U − W, � f Vs = −U − ε2β(R)W, (8.73)

and the kinematic condition at the bed is expressed by

Z = F(R) : β(R)U − W = � f B, (8.74)

where B(R) is a normalized basal melt rate. Finally, the linear sliding law, when
expressed in the normalized dimensionless form, becomes

Ts = Λ TnVs , (8.75)

where Λ is an order unity or greater normalized basal friction coefficient.
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The orthotropic constitutive law, in the general form given by (8.19) and in the
normalized form by (8.25), after applying the scalings (8.64) and (8.42), becomes

Σ = 2μ̃0εH( D̄, B, M(r)) (r = 1, 2, 3). (8.76)

In this section we confine attention to the additive forms of the viscous flow law,
in which case the tensor function H( D̄, B, M(r)) is given by

H( D̄, B, M(r)) = D̄ +
3∑

r=1

f (ξr )
[
M(r) D̄ + D̄M(r) − 2

3 tr(M
(r) D̄)I

]+

+ g(ζ)
[
B D̄ + D̄B − 2

3 tr(B D̄)I
]
. (8.77)

The above form generalizes the additive constitutive equations considered in
Sects. 7.5 and 7.6.3. Therefore, the response functions in (8.77), f and g, repre-
sent either the functions f̄ and ḡ used in (7.115) on p. 251, or the functions f̃ and g̃
used in (7.170) on p. 267. Similarly, the function arguments, the invariants ξr and ζ,
defined by (7.111), are replaced by the invariants br and K , respectively, when the
functions f̃ and g̃ are applied.

The viscous flow law (8.76) with the tensor function H given by (8.77) determines
the following deviatoric stress tensor components:

Σrr = 2μ̃0ε
[
(1 + 2c1)D̄rr − c2 D̄θθ − c3 D̄zz + c4 D̄rz

]
,

Σθθ = 2μ̃0ε
[−c1 D̄rr + (1 + 2c2)D̄θθ − c3 D̄zz − 2c4 D̄rz

]
,

Σzz = 2μ̃0ε
[−c1 D̄rr − c2 D̄θθ + (1 + 2c3)D̄zz + c4 D̄rz

]
,

Σr z = 2μ̃0ε
[
c4(D̄rr + D̄zz) + (1 + c5)D̄rz

]
, (8.78)

with the coefficients ci (i = 1, . . . , 5) defined by

c1 = 1
3

[
f (ξ1)M

(1)
rr + f (ξ3)M

(3)
rr + g(ζ)Brr

]
,

c2 = 1
3 [ f (ξ2) + g(ζ)Bθθ] ,

c3 = 1
3

[
f (ξ1)M

(1)
zz + f (ξ3)M

(3)
zz + g(ζ)Bzz

]
, (8.79)

c4 = 1
3

[
f (ξ1)M

(1)
r z + f (ξ3)M

(3)
r z + g(ζ)Brz

]
,

c5 = 1
2

[
f (ξ1) + f (ξ3) + g(ζ)(Brr + Bzz)

]
.

It can be proved that in the initial undeformed state when B = I , so that b1 =
b2 = b3 = 1 and K = 3, implying ξ1 = ξ2 = ξ3 = 0 and ζ = 0, all the coefficients
ci (i = 1, . . . , 5) vanish, irrespective of which constitutive law formulation, (7.115)
or (7.170), is employed. As a result, relations (8.78) reduce to four equations Σi j =
2μ̃0εD̄i j , meaning that the adopted flow law describes the viscous behaviour of an
isotropic fluid.
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Finally, the components of the deformation gradient F, given by (8.59), are
expressed in the normalized stretched coordinates by

Frr = ∂R

∂R∗ , Fθθ = R

R∗ , Fzz = ∂Z

∂Z∗ ,

Frz = ε−1 ∂R

∂Z∗ , Fzr = ε
∂Z

∂R∗ ,

(8.80)

where R∗ and Z∗ are the stretched normalized reference coordinates, related to
the physical coordinates r∗ and z∗ in the same way as the corresponding spatial
coordinates are, that is, by R∗ = ε r∗/h∗ and Z∗ = z∗/h∗. Relations (8.80) show
that the components of F are of different orders, with Frz of the largest magnitude
of order ε−1, and Fzr of the smallest magnitude of order ε. A similar structure, in
terms of typical normalized magnitudes, is shown by the velocity gradient tensor
L̄, see (8.63). The components of the tensors F and L̄ can be rescaled once again
(Staroszczyk 2004) so that they all become order unity quantities, but the details are
omitted here. Inspection of relations (8.58) for the components of the deformation
tensor B shows that the largest component, of order ε−2, is Brr , and the smallest, of
order ε2, is Bzz (the components Brz = Bzr are of order ε−1).

8.2.3 Leading-Order Equations and Solutions

In the previous Sect. 8.2.2, the flow problem differential equations and boundary
conditions are derived in the form of asymptotic expansions in the small parameter
ε � 1. These equations are now solved in an approximate way by constructing a
leading-order solution, instead of attempting to solve them in their full forms. For
this purpose, all terms in the full equations which are of order ε or smaller compared
to unity are first neglected, and then the simplified equations are solved to yield
the leading-order approximations to the exact solutions of the axi-symmetric flow
problemconsidered. The asymptotic solutions are constructed under the standardSIA
assumption that the bed slopes f ′(r) are of order ε or less; that is, the normalized
slopesβ = F ′(R) are of order unity or less (Morland and Johnson 1980; Hutter 1983;
Morland 1984). The situations in which the bed slopes are of larger magnitudes were
treated by the method of asymptotic expansions, for isotropic ice, byMorland (2000,
2001) and Schoof (2003), and for anisotropic ice byMorland and Staroszczyk (2006)
and Staroszczyk (2006).

Accordingly, to simplify the relevant equations in Sect. 8.2.2, we omit all terms
with factors ε, ε2 and ε3, by considering them to be negligibly small. The mass
conservation balance (8.65), which does not involve ε, is solved in its full form. To
leading order, the horizontal and vertical equilibrium equations, (8.66) and (8.67),
become

∂P

∂R
= ∂Σr z

∂Z
,

∂P

∂Z
= −1. (8.81)
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Expressions (8.37) on p. 284, due to the assumption that the normalized free
surface and bed slopes, Γ and β respectively, do not exceed unity, yield

�h = 1, � f = 1. (8.82)

Therefore, the zero traction conditions at the free surface, given by (8.68) and
(8.69), become, to leading order,

Z = H(R) : P = 0, Σr z = 0, (8.83)

and the free surface kinematic condition (8.70) takes the form

Z = H(R) : ΓU − W = Q. (8.84)

At the bed Z = F(R), the normal and tangential traction components, (8.71) and
(8.72), are defined, to leading order, by

Z = F(R) : Tn = −P, Ts = Σr z, (8.85)

the ice velocity components, (8.73), are now

Z = F(R) : Vn = βU − W, Vs = −U, (8.86)

and the basal kinematic condition, (8.74), is

Z = F(R) : βU − W = B. (8.87)

With the basal tractions and velocities given by (8.85) and (8.86), the sliding law
(8.75) becomes

Z = F(R) : Σr z = ΛPU. (8.88)

The normalized deviatoric stress components are prescribed by relations (8.78)
and (8.79). The coefficients ci (i = 1, . . . , 5) describe changes in the dimensionless
viscosities relative to unity as ice fabric evolves from its initially isotropic to strongly
anisotropic state. Experimental evidence indicates that the polar ice viscosities do not
change by more than a factor of about 10. On the other hand, as shown by relations
(8.62), the shear strain-rate component D̄rz is by a factor of ε−1 ∼ 600 � 10 larger
than each of the remaining strain-rate components. Since D̄rz enters each of the
four relations (8.78), this implies that for a strongly anisotropic fabric all four tensor
components Σi j are of the same order of magnitude, governed by the magnitude of
D̄rz . Therefore, the leading-order approximations to the deviatoric stresses are given
by

Σrr = Σzz = −1

2
Σθθ = μ̃0 crr

∂U

∂Z
, Σr z = μ̃0 crz

∂U

∂Z
, (8.89)
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where

crr (R, Z) = 1
3

[
f (ξ1)M

(1)
r z + f (ξ3)M

(3)
r z + g(ζ)Brz

]
, (8.90)

crz(R, Z) =1 + 1
2

[
f (ξ1) + f (ξ3) + g(ζ)(Brr + Bzz)

]
. (8.91)

In order to solve the above leading-order equations, the method first developed by
Morland (1997, 2000) is followed. The new features in this analysis compared to the
latter papers are: (1) the inclusion of the ice anisotropy in the flow problem, (2) no
stream function is introduced to construct the solution, and (3) a different method
is applied to solve the ensuing differential equation for the free surface elevation
function H(R). Accordingly, we start from integration of equilibrium equations
(8.81)with the boundary conditions (8.83) at the free surface,which gives the leading-
order approximations for pressure and stress fields

P(R, Z) = H(R) − Z , Σr z(R, Z) = −Γ (R)[H(R) − Z ]. (8.92)

These two relations express the pressure Pb and shear stress Σr zb at the base Z =
F(R) as

Pb(R) = �(R), Σr zb(R) = −Γ (R)�(R), �(R) = H(R) − F(R), (8.93)

where �(R) is the ice thickness. With the latter basal stress components, the sliding
law (8.88) determines the leading-order horizontal velocity at the base, Ub, as

Ub(R) = −Γ (R)

Λ(R)
, (8.94)

where the friction coefficient Λ is assumed to depend only on the position R; that
is, it does not depend on stress and temperature. The kinematic condition at the bed,
(8.87), expresses then the basal vertical velocity Wb as

Wb(R) = β(R)Ub(R) − B(R), (8.95)

where the basal melt-rate B is assumed to depend only on R. The basal velocity
components (8.94) and (8.95) are used as boundary conditions in integration of the
flow equations over the depth Z to determine the velocity field inside the ice sheet.
Hence, the shear stress Σr z is first eliminated from (8.92)2 by using the last of the
constitutive relations (8.89), and then, by integrating the resulting equation, one
obtains

U (R, Z) = Ub(R) + G1(R, Z), (8.96)

where the function G1 is defined by

G1(R, Z) = −Γ (R)

Z∫
F

H(R) − Z ′

μ̃0(R, Z ′)crz(R, Z ′)
dZ ′. (8.97)
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The prime denotes a running integration variable. With the horizontal velocity
component U (R, Z) given by (8.96), the vertical component W (R, Z) is calculated
by solving the incompressibility equation (8.65). Thus,

W (R, Z) = Wb(R) − 1

R
Ub(R)[Z − F(R)] − dUb

dR
[Z − F(R)]+

− 1

R
G2(R, Z) − ∂G2

∂R
(R, Z), (8.98)

where the function G2 is given by

G2(R, Z) = −Γ (R)

Z∫
F

(Z − Z ′)(H − Z ′)
μ̃0(R, Z ′)crz(R, Z ′)

dZ ′. (8.99)

The above leading-order relations express the stress and velocity components in
terms of the free surface elevation function H(R), which is yet unknown, and the
prescribed bed elevation function F(R), together with their derivatives Γ (R) and
β(R). In order to find H(R), use is made of the kinematic conditions (8.84) and
(8.87), defined at the free surface and bed, respectively. Hence, we first difference
both kinematic equations to obtain the relation

ΓU (R, H) − βUb(R) − W (R, H) + Wb(R) = Q∗[R, H(R)], (8.100)

where Q∗ = Q − B, and then substitute into it expressions forU andW , (8.96) and
(8.98). This yields the ordinary differential equation

d

dR
{RUb(R)�(R) − RΓ (R)I (R)} = RQ∗[R, H(R)], (8.101)

where I (R) is defined by

I (R) =
H(R)∫

F(R)

(H − Z ′)2

μ̃0(R, Z ′) crz(R, Z ′)
dZ ′. (8.102)

Integration of (8.101) from the ice divide R = 0 to the margin R = RM , due to
U (0) = 0 and I (RM) = 0, gives the relation

RM∫
0

RQ∗[R, H(R)] dR = 0, (8.103)

whichmeans that there is no net flux ofmass into the ice sheet. In otherwords, the total
mass of ice remains constant, which is consistent with the steady flow assumption.
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The differential equation (8.101) is second-order in the unknown function H(R),
since it involves the term Γ (R) = H ′(R) in the curly braces on the left-hand side.
The equation is solved by transforming it into an equivalent system of two first-order
equations. For this purpose, let us denote the expression in the braces in (8.101) by

K (R) = −RΓ (R)
{
Λ−1(R)�(R) + I (R)

}
, (8.104)

where relation (8.94) for Ub has been substituted. Hence, (8.101) becomes a first-
order equation

dK

dR
= RQ∗[R, H(R)]. (8.105)

The above equation is solved over R ranging from zero to the margin at RM . Since
at R = RM we have � = 0, hence I (R) = 0 and K = 0, the boundary conditions
for (8.105) are given by

K (0) = 0, K (RM) = 0. (8.106)

Relation (8.104) expresses Γ (R) = H ′(R) as

dH

dR
= − K (R)

R
{
Λ−1(R)�(R) + I (R)

} , (8.107)

which is the second first-order equation to be solved simultaneously with (8.105).
The boundary conditions for (8.107) are defined by

H(0) = HD, H(RM) = F(RM) , (8.108)

where HD is the ice divide elevation, and RM defines the point at which H = F ,
that is, � = 0; both HD and RM are unknown quantities that need to be calculated
as part of the solution.

Note that the dependence of the leading-order solution on the anisotropic proper-
ties of ice is described by the two functions crr and crz , defined by (8.90) and (8.91).
The function crz explicitly enters the denominators of the integrands in (8.97), (8.99)
and (8.102), whereas the function crr is involved implicitly through the invariant
tr S2 (and hence trΣ2) on which the magnitude of the ice viscosity depends, see
relations (8.89) for the dimensionless stress tensor components.

The two first-order parabolic differential equations, (8.105) and (8.107), for the
free surface profile H(R), with the boundary conditions (8.106) and (8.108) pre-
scribed at a priori unknown positions of the ice divide and margin, form a two-point
boundary-value problem. A shooting method has been applied to solve the two
equations. First, for given distributions of the fabric functions crz and crr , trial val-
ues of HD and RM are assumed, and then, starting from the endpoints R = 0 and
R = RM and moving inwards, numerical integration is carried out by using a
Runge-Kutta-Fehlberg scheme with an adaptive step size. The routine is repeated
until the elevation H and the value of the function K are matched at a chosen interior
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Fig. 8.10 Ice particle paths in an ice sheet flowing on a flat horizontal bed, with no basal melting.
The times (in thousands of years) indicate the age of ice leaving the ice sheet due to ablation

fitting point. The validity and accuracy of the solution is verified by employing the
integral property (8.103). Having found the free surface profile H(R), the flow field
variables (the velocities and their gradients) are evaluated and the spatial distributions
of the functions crz and crr are updated, before starting calculations to find the next
approximation for the free surface elevation function H . Such iterations between the
ice fabric and the flow fields are repeated until a convergent solution is obtained;
the first iteration is started by assuming an isotropic fabric, for which crz = 1 and
crr = 0. Simultaneously, in each iteration, the system of five hyperbolic partial dif-
ferential equations defined by (8.22) on p. 281 is solved to follow the evolution of
the fabric along ice particle paths (streamlines). The paths start at the free surface in
the accumulation zone (Q > 0), where F = I , pass through the interior of the ice
sheet, and end either at the free surface in the ablation zone (Q < 0), or at the bed if
basal melting occurs (B > 0). Typical ice particle paths in an ice sheet creeping over
a flat bed, with no ice melting at the base, are illustrated in Fig. 8.10. For selected
paths shown is the corresponding age of ice (given in thousands of years, kyr) when
it leaves the ice sheet due to ablation. The parameters describing the flow of ice are
provided in the following Sect. 8.2.4.

8.2.4 Numerical Ice Sheet Flow Simulations

The leading order equations derived in the previous section were solved numerically
to simulate the steady flow of ice in a number of simple, idealized configurations.
The main objective was to explore the effects of ice anisotropy on the ice sheet
free surface geometry and the velocity variation across its depth. A range of model
functions proposed byMorland (1997)was used in the simulations to prescribe the ice
accumulation and temperature spatial distributions, and to define the bed topography.



www.manaraa.com

8.2 Radially-Symmetric Ice Sheet Flow 309

This allowed the validity and accuracy of the numerical method applied here to be
verified by comparing its results with the isotropic ice solutions obtained earlier by
Morland (1997) and Cliffe and Morland (2000, 2001, 2002), before starting the
investigation of the anisotropic ice flows.

The two differential equations (8.105) and (8.107) were integrated by using 500
or 1000 basic integral intervals along R to calculate the free surface profile H(R).
The integration of the equations was started with trial values of HD and RM , and
the solutions for the functions K (R) and H(R) were matched with an accuracy of
10−6 at a fitting point located in the middle of a current integration range; that is,
at R = RM/2. In the matching procedure, a number of numerical routines from the
book by Press et al. (2001) were employed. 100 points along the vertical were used
to perform all depth integrations, and up to 5000 intervals were needed to calculate,
from the evolution equations (8.22), the deformation gradient components along the
longest characteristics (streamlines). The iterations between successive solutions for
the flow and the fabric fields were continued until the maximum difference between
the free surface profiles in two consecutive iterations was less than 10−5. Typically,
this required about 50 iterations.

The results presented below were obtained by adopting the characteristic mag-
nitudes of the ice thickness h∗ = 2000 m and the accumulation rate (or the vertical
ice velocity) v∗ = 1myr−1. These values determine the small aspect ratio parameter
ε = 0.00167 ∼ 1/600, and hence the length unit in the radial direction is equal to
1200 km, and the horizontal velocity unit is 600 m yr−1. Further, the associated time
unit is equal to 2000 yr and the strain-rate unit is the reciprocal of the latter value.
To test the numerical ice flow model, the simulations were first run for two alterna-
tive constitutive laws in their additive forms, considered in Sects. 7.5 and 7.6.3 and
expressed by Eqs. (7.115) and (7.170), respectively. The results showed that the two
constitutive models predict very similar behaviour of an ice sheet, with the lateral
spans RM and the divide elevations HD differing by no more than 2 × 10−3. The
results presented below were obtained by applying the flow law in the form given by
(7.170).

As first, the viscous flow of a polythermal ice sheet over a flat bed F(R)=0
is considered. At the glacier base, the ice sliding conditions are adopted, with the
basal friction coefficientΛ = 10. The ice sheet is subject to the free surface accumu-
lation, the rate of which is described by the following idealized distribution function
proposed by Morland (1997):

Q = Q∞ − (Q∞ − Q0) exp(−H/H∗), (8.109)

where Q∞ > 0 and Q0 < 0 define the accumulation rates at H → ∞ and H = 0,
respectively, and H∗ is a decay height. The snow line altitude, at which Q = 0, is
then given by

He = H∗ ln(1 − Q0/Q∞). (8.110)
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Fig. 8.11 Free surface profiles H(R) for isotropic and anisotropic ice with different combinations
of enhancement factors Ea and Es . Adapted from Staroszczyk (2006), Fig.2, with permission of
the Polish Academy of Sciences

In the simulations, the values Q∞ = 0.5, Q0 = −1 and H∗ = 0.25 were used,
implying He = 0.275, corresponding to h = 550 m. The adopted temperature dis-
tribution function, also due to Morland (1997), is expressed by

T̄1 = − 4
5H + 1

2

{
H − Z − 1

4

[
�2(H − Z) − 1

2�(H − Z)2
]}

. (8.111)

Recall that T̄ is a normalized temperature defined by (3.19) on p. 40:

T̄ = (T − Tm)/�T , �T = 20 K, (8.112)

where Tm = 273.15 K is the ice melting temperature at the atmospheric pressure.
Figure 8.11 illustrates the effect of ice anisotropy on the free surface profiles

H(R). No basal melting is assumed, so B = 0 and Q∗ = Q. Compared are the
results for isotropic and anisotropic ice, characterized by different combinations of
the axial and shear enhancement factors. The pair Ea = 3 and Es = 8 describes the
limit viscous properties of so-called warm ice.

The results plotted in the figure show that the influence of the ice anisotropy is
more pronounced on the ice sheet extent RM , rather than on the ice thickness HD at
the divide R = 0. For the most anisotropic ice illustrated in the figure (red line, warm
ice), the sheet span increases by about 19% compared to the isotropic ice, while the
ice divide thickness decreases by about 8%.

The results displayed in Fig. 8.12 show depth profiles of the scaled horizontal
and vertical velocitiesU and W at R = RM/2 (the middle of the ice sheet span), for
the same ice sheet geometry and the viscous properties of anisotropic ice as those
illustrated in Fig. 8.11. It can be observed that the ice anisotropy significantly affects
the horizontal velocities across an ice sheet (Fig. 8.12a), while its effect on the vertical
velocity components is relatively small, with very similar depth profiles for different
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(a) (b)

Fig. 8.12 a Horizontal and b vertical velocity depth profiles at R = RM/2 for isotropic and
anisotropic ice with different combinations of enhancement factors. Fig. (a) adapted from
Staroszczyk (2006), Fig.3a, with permission of the Polish Academy of Sciences

combinations of the enhancement factors. An interesting feature is the decrease of
the basal horizontal velocity Ub with increasing anisotropy of ice (increasing value
of Es); that is, with increasing ease of ice shearing, so that the fastest flowing ice
near the bed is the isotropic (the ‘stiffest’) ice. On the other hand, as one can expect,
the fastest flowing ice near the free surface is the most anisotropic (the ‘softest’) one.

The plots in Fig. 8.13 present the depth profiles of the horizontal and vertical
velocities at different locations R/RM in a flow of ice of the properties defined by
the parameters Ea = 3 and Es = 8 (representing warm ice). It is seen again that
the vertical velocities (Fig. 8.13b) do not change much along the ice sheet (to some
extent, thismaybe the consequence of the adopted accumulation distribution function
(8.109)). The horizontal velocities, in turn, vary considerably down the ice sheet,
growing steadily with increasing distance from the ice divide. The increasing slopes
of the respective velocity curves near the bed reflect increasing shear strain-rates
near the glacier base, facilitated by the anisotropic ice fabric development (decrease
in shear viscosities) in near-base regions.

Figure 8.14 illustrates the effects of basal ice melting and the temperature distri-
bution on the ice sheet geometry (the free surface profile H(R), the lateral span RM

and the divide height HD). Presented are the free surface profiles for the flows of
warm ice (Ea = 3 and Es = 8) for three different melt rates, B = 0 (no basal melt),
B = 0.05 and B = 0.10, all for the temperature distribution T1 given by (8.111).
In addition, also the surface profile H(R) for no basal melting conditions, but with
a different temperature field, denoted by T2, is displayed. The latter temperature
distribution is the one in which ice is assumed to have, at a given R, constant tem-
perature across the ice depth, which is an average of the corresponding surface and
base temperatures prescribed by (8.111). Hence, T2 defines the surface temperature
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(a) (b)

Fig. 8.13 a Horizontal and b vertical velocity depth profiles at different locations R/RM for
anisotropic ice defined by enhancement factors Ea = 3 and Es = 8 (warm ice). Fig. (a) adapted
from Staroszczyk (2006), Fig.3b, with permission of the Polish Academy of Sciences

Fig. 8.14 Free surface profiles H(R) for flows with different basal melt rates B and temperature
distributions T , for anisotropic ice defined by enhancement factors Ea = 3 and Es = 8. Corre-
sponding isotropic ice profiles are plotted by dashed lines in the matching colours. Adapted from
Staroszczyk (2006), Fig.5, with permission of the Polish Academy of Sciences

which is higher, and the base temperature which is lower, than the respective tem-
peratures given by T1. In the figure, the profiles for the anisotropic ice (solid lines)
are compared with the corresponding results for the isotropic ice (dashed lines in the
matching colours). One can note that the occurrence of basal melting significantly
increases (for a given surface accumulation rate distribution) the total volume of ice
in steady flow, increasing both the lateral span RM and the divide thickness HD by
approximately the same rates when compared to the no basal melt flow. The com-
parison of the free surface profiles for the anisotropic and isotropic ice indicates that



www.manaraa.com

8.2 Radially-Symmetric Ice Sheet Flow 313

the anisotropy effects, reflected by flattening of the glacier, are similar in the three
cases of B investigated. Further, it appears that the presence of basal melting does
not modify considerably the overall behaviour of the anisotropic ice sheet (that is,
the shapes of the profiles H(R) are very similar, only their size differs). The plots for
no-melt conditions (B = 0) and the two different temperature distributions, T1 and
T2, show that the influence of temperature is moderate, leading to a relative decrease
in the radial extent RM by about 4% for the distribution T2; that is, when the ice
at the glacier base is colder, and hence more viscous, than it is in the case of the
temperature field T1.

The next three figures illustrate the effect of the mechanism of dynamic recrys-
tallization on the free surface shape and the velocity depth profiles across an ice
sheet. The results presented below were obtained for the ice rheological parameters
pertaining to warm ice (Ea = 3 and Es = 8), and again the surface ice accumulation
distribution Q, given by relation (8.109) with Q∞ = 0.5, Q0 = −1 and H∗ = 0.25,
and the temperature field T̄1 defined by (8.111), were used in the simulations. No
basal melting (B = 0) was assumed, and the basal friction coefficient was Λ = 10.

The effects of the ice anisotropy and the mechanism of migration recrystallization
on the free surface profile H(R) are illustrated in Fig. 8.15. By comparing the surface
profile for the isotropic ice with those for the anisotropic ice, it can be observed that
the anisotropy influences more the ice sheet span, defined by the margin radius
RM , than the ice divide thickness HD at R = 0. For the anisotropic ice with no
recrystallization taking place (the blue line in the plot), the relative increase in the
ice sheet horizontal extent is about 28%, versus the ice divide thickness decreasing
by about 12%. The occurrence of the migration recrystallization process, resulting
in the restoration of the isotropy in the near-bed layer of the ice which makes it
‘stiffer’, leads to shortening and steepening of the free surface profile (the red line).
Compared to the non-recrystallizing ice, the icemargin radius RM decreases by about
7%, while the divide elevation increases by nearly 4%. In physical units, against the
isotropic ice, the margin moves by about 191 km in the case of non-recrystallizing
anisotropic ice, and by about 127 km in the case of recrystallizing ice. The respective
changes in the ice divide thickness are −131 m for non-recrystallizing, and −90 m
for recrystallizing ice.

The plots in Fig. 8.16 compare the horizontal velocity depth profiles for the
isotropic and anisotropic ice flows, with and without the occurrence of the dynamic
recrystallization process. The same input parameters were used as those in the pre-
vious figure. Figure 8.16a shows the velocity distributions at the mid-span location
R = RM/2. It is seen that the recrystallization mechanism has a moderate effect
on the velocity field U . In the normalized units, the difference between the free
surface horizontal velocities of non-recrystallizing and recrystallizing ice does not
exceed 0.01. In physical units, the free surface velocities for non-recrystallizing and
recrystallizing ice, compared to those of the isotropic ice, are greater by about 16
and 21 m yr−1, respectively. The plots in Fig. 8.16b compare the horizontal velocity
depth profiles for non-recrystallizing (the solid lines) and recrystallizing (the dashed
lines) anisotropic ice at different locations R/RM along the lateral direction. One
can note that the influence of the recrystallization mechanism on the velocity field is
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Fig. 8.15 Free surface profiles H(R) for isotropic ice, and for anisotropic ice with and without
dynamic recrystallization occurring

(a) (b)

Fig. 8.16 Horizontal velocity depth profiles: a at R = RM/2 for isotropic and anisotropic non-
recrystallizing and recrystallizing ice; b at different locations R/RM for non-recrystallizing and
recrystallizing anisotropic ice defined by enhancement factors Ea = 3 and Es = 8 (warm ice)

small in the central part of the glacier (R/RM � 0.4), but in the region close to the
glacier margin (R/RM � 0.8) its role becomes more significant.

Figure 8.17 presents the effect of the dynamic recrystallization process on the free
surface profile H(R) at different basal melt rates. The cases of B = 0 (no melting),
B = 0.05 and B = 0.10 are illustrated. It can be seen that an increase in the basalmelt
rates, with the adopted free surface accumulation/ablation rates Q (depending on the
elevation H ), increases both the lateral span RM and the divide thickness HD by about
the same amount. The comparison of the corresponding curves for recrystallizing ice
(the solid lines) and non-recrystallizing ice (the dashed lines) shows that the effect
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Fig. 8.17 Free surface profiles H(R) for flows with different basal melt rates B, for recrystallizing
(solid lines) and non-recrystallizing (dashed lines) anisotropic ice

of the recrystallization process on the free surface profile depends relatively little on
the basal melting rates.

Finally, the flow of ice on uneven bed is considered to see how the bed topography
affects the span and thickness of ice. Two simple bed forms are adopted for illus-
trations: a single hump of a moderate slope, and a single hollow, being the mirror
image of the slope (see Figs. 8.19 and 8.20). It was assumed in the simulations that
an ice sheet was subject to the elevation-dependent accumulation/ablation described
by (8.109), with the parameters Q∞ = 0.5 and H∗ = 0.25 of the same values as
those adopted for the flow problems with flat beds, illustrated above. However, the
parameter Q0, defining the accumulation rate at H = 0, was assumed to be equal
to −6, which describes much larger ablation near an ice sheet margin than that in
the above-illustrated cases for Q0 = −1. The adopted set of parameters implies the
equilibrium height (snowline), where Q = 0, equal to H = 0.641, corresponding
to h = 1282 m (compared to h = 550 m in the flow problems considered earlier).
The temperature field in the ice sheet was described again by relation (8.111). The
coefficient of the basal friction was Λ = 25 (compared to Λ = 10 in the previous
simulations), and no basal melting (B = 0) case was simulated.

In most of the ice sheet flow cases illustrated above, the limit viscous properties
of ice (defined by the enhancement factors Ea and Es) were assumed to be those of
warm ice (Ea = 3 and Es = 8). Now also the behaviour of cold ice, defined by the
enhancement factors Ea = 1/3 and Es = 5, is illustrated. It has turned out (Morland
and Staroszczyk 2006) that the numerical modelling of ice sheet flows involving cold
ice is much more difficult than that involving warm ice.

The results of simulations carried out for the input parameters described above
are presented in Figs. 8.18, 8.19 and 8.20. For reference, the first of these figures
illustrates the case of flow on a flat bed, for isotropic, and for anisotropic warm and
cold ice. It is immediately seen that the assumption of a much larger ablation rate Q0

at the ice margin level results in much larger values of the lateral span RM and the
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Fig. 8.18 Free surface profiles H(R) for isotropic, and for anisotropic cold and warm ice flowing
on the flat bed. Reprinted from Morland and Staroszczyk (2006), Fig. 3, with permission of the
International Glaciological Society

Fig. 8.19 Free surface profiles H(R) for isotropic, and for anisotropic cold andwarm ice flowing on
the illustrated hump bed. Reprinted fromMorland and Staroszczyk (2006), Fig. 4, with permission
of the International Glaciological Society

divide height HD than those shown in Figs. 8.11 and 8.15. It can be also observed
that the free surface profiles for the cases of cold and warm ice are quite different:
the cold ice profile is steeper, with a larger divide height HD and a smaller lateral
span RM than the corresponding values for warm ice.

Figure 8.19 illustrates the free surface profiles for the ice sheet flow over a single
hump centred at R = 0.4, of a span 40h∗, a height 0.4h∗, and a slope 0.01. One can
see that, compared to the flat bed case presented in Fig. 8.18, the corresponding ice
sheet spans are now a little smaller than those in the previous flow configuration,
while the ice divide elevations are significantly larger, by about 17–18%, depending
on the type of ice. One can also note the pronounced local changes in the free surface
slopes reflecting the effect of the underlying hump on the ice flow.
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Fig. 8.20 Free surface profiles H(R) for isotropic, and for anisotropic cold andwarm ice flowing on
the illustrated basin bed. Reprinted from Morland and Staroszczyk (2006), Fig. 5, with permission
of the International Glaciological Society

The last Fig. 8.20 shows the free surface profiles for the flow over a hollow (basin),
of the geometry being a mirror image of the hump (that is, the spans and slopes are
the same, but the hollow depth elevation is the negative hump height elevation).
Compared to the flat bed case (see Fig. 8.18), the corresponding lateral spans are
again similar, but the divide heights are considerably smaller, changing from about
7% (cold ice) to about 12% (isotropic ice). Again, there is some effect of the bed
topography visible on the free surface slopes, but this effect is less pronounced than
in the case of flow over a hump.
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Appendix A
Physical Parameters Relevant to Ice

Parameter Value Unit
Albedo of bare sea ice ∼0.5 –
Albedo of snow-covered sea ice ∼0.9 –
Bulk modulus of isotropic ice at 263 K 7.94 GPa
Compressive fracture strength of ice ∼5 MPa
Creep activation energy for ice at 263 K 6.7 × 104 Jmol−1

Density of bubble-free ice 916.7 kgm−3

Fracture toughness of ice of grain size 1 mm 0.10 MPam1/2

Freezing temperature of water of salinity 35 ppt 271.24 K
Latent heat of ice melting 3.34 × 105 J kg−1

Poisson’s ratio for isotropic polycrystalline ice 0.31 –
Shear modulus of isotropic ice at 263 K 3.45 GPa
Specific heat of air at sea level at 273.15 K 1.00 × 103 J kg−1 K−1

Specific heat of air-free water 4.18 × 103 J kg−1 K−1

Specific heat of ice at 263 K 2.11 × 103 J kg−1 K−1

Tensile fracture strength of ice ∼1 MPa
Thermal conductivity of air at 273 K 0.024 Wm−1 K−1

Thermal conductivity of ice at 272 K 2.22 Wm−1 K−1

Thermal conductivity of water at 273 K 0.58 Wm−1 K−1

Thermal diffusivity coefficient for ice 1.15 × 10−6 m2 s−1

Thermal expansion coefficient of ice at 263 K 5.2 × 10−5 K−1

Universal gas constant 8.314 JK−1 mol−1

Viscosity of isotropic ice at 263 K at 0.1 MPa ∼1 × 1014 Pa s
Water triple point pressure 612 Pa
Water triple point temperature 273.16 K
Young’s modulus of isotropic ice at 263 K 9.05 GPa
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Appendix B
Tensor Representations for Constitutive Laws

Admissible constitutive relationsmust satisfy the principle of objectivity (or principle
of isotropy of space, or principle of frame-indifference) (Boehler 1987; Spencer
1987a, b;Chadwick 1999;Liu 2002;Truesdell andNoll 2004), according towhich the
observed response of amaterial is the same for any pair of observers. Inmathematical
terms, an observer is interpreted as a frame of reference, so the principle of objectivity
requires constitutive laws to be invariant under changes of frame that preserve the
essential structure of space and time (so that the distance of any pair of points, the
orientation of space, and the time lapse between any two events, all remain unaltered).
An observer frame transformation connecting position x and time t in one reference
frame to position x∗ and time t∗ in another frame,which satisfies the above invariance
properties, can be expressed by a time-dependent rigid transformation, also referred
to as the Euclidean transformation:

x∗ = Q(t)x + c(t), t∗ = t − a, (B.1)

where Q is a proper orthogonal tensor, c is a vector-valued function of time, and a is
a constant. The principle of frame-indifference must be distinguished from the usual
transformation law for tensor components in different coordinate frames, since the
latter law does not involve time (and, therefore, is less restrictive than the principle
of tensor frame-invariance).

A time-dependent scalarφ(x, t), vector u(x, t), and a second-order tensor T (x, t)
are said to be, respectively, an objective (or frame-indifferent) scalar, vector or tensor,
if, when subjected to a change of reference frame given by the Euclidean transfor-
mation (B.1), they obey the relations

φ∗(x∗, t∗) = φ(x, t),

u∗(x∗, t∗) = Q(t) u(x, t),

T ∗(x∗, t∗) = Q(t) T (x, t) QT (t),

(B.2)
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where the starred entities denote the counterparts of φ, u and T when transformed by
applying (B.1). It can be proved that objective fields includeCauchy stress, the second
Piola-Kirchhoff stress, left stretch tensor, left Cauchy-Green deformation tensor,
strain-rate tensor, spatial gradient of an objective scalar field, spatial divergence of
an objective vector field and spatial divergence of an objective tensor field. Non-
objective quantities, that is those which do not satisfy (B.2), are the first Piola-
Kirchhoff stress, referential deformation gradient, right stretch tensor, right Cauchy-
Green deformation tensor, spatial velocity gradient, spin tensor, rotation tensor and
referential gradient of an objective scalar field (Chadwick 1999; Liu 2002).

Assume that the behaviour of an anisotropicmaterial is described by a constitutive
equation which relates a second-order tensor T to a set of second-order tensors A1,
A2, . . . , Am and M1, M2, . . . , Mn by means of a tensor-valued function H :

T = H(A1, A2, . . . , Am; M1, M2, . . . , Mn), (B.3)

where the tensors Ai represent mechanical arguments (such as stress, strain, strain-
rate, etc.) on which the material behaviour depends, and the tensors M j are a set
of n so-called structure tensors, which define symmetry properties of the internal
structure of the material.

A non-linear frame-indifferent constitutive equation involving the tensors Ai and
M j , includes a set of tensor generators, which are formed from the tensors Ai , M j
and their inner products, and a set of scalar-valued response coefficients αk , which
are functions of scalar invariants of the tensors Ai , M j and their inner products.
For any particular type of the material symmetry, an irreducible (or canonical) form
of a constitutive law can be derived (Boehler 1987), for which none of the tensor
generators, and none of the invariant arguments of the response coefficients, can be
expressed as a single-valued function of the others. Below, the irreducible forms of
the constitutive laws for isotropic, transversely isotropic and orthotropic materials
are presented, with the restriction that these laws relate one symmetric second-order
tensor T to two other symmetric second-order tensors A1 and A2 (besides a relevant
set of structure tensors M j ). The constitutive laws involving only one tensor as a
mechanical argument, A1 say, can be obtained by omitting in the respective relations
all the terms containing A2.

Isotropic Medium

The only structure tensor M for an isotropic material is the unit tensor I ; therefore,
there is no need to use any structure tensor in the constitutive description. The general
frame-indifferent tensor representation for a constitutive law for an isotropicmedium
involves eight tensor generators, and is expressed by

T = α1 I + α2A1 + α3A2 + α4A
2
1 + α5A

2
2 + α6(A1A2 + A2A1) +

+ α7(A
2
1A2 + A2A

2
1) + α8(A1A

2
2 + A2

2A1).
(B.4)

The scalar-valued response coefficientsαk (k = 1, . . . , 8) entering (B.4) are functions
of ten invariants of the tensors A1 and A2:
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αk = αk( tr A1, tr A2
1, tr A3

1, tr A2, tr A2
2, tr A3

2,

tr A1A2, tr A2
1A2, tr A1A

2
2, tr A2

1A
2
2).

(B.5)

Transversely Isotropic Medium

A transversely isotropic body has one privileged material direction, which is the axis
of the material rotational symmetry. This symmetry property is described by a single
structure tensor M, given by

M = e ⊗ e, (B.6)

where e is the unit vector along the axis of rotational symmetry. The general objective
representation for a transversely isotropic material incorporates 13 tensor generators,

T = α1 I + α2M + α3A1 + α4A2 + α5(MA1 + A1M) +
+ α6(MA2 + A2M) + α7A

2
1 + α8A

2
2 + α9(MA2

1 + A2
1M) +

+ α10(MA2
2 + A2

2M) + α11(A1A2 + A2A1) +
+ α12(A

2
1A2 + A2A

2
1) + α13(A1A

2
2 + A2

2A1),

(B.7)

and the response coefficients αk (k = 1, . . . , 13) are functions of 14 scalar invariants:

αk = αk( tr A1, tr A2
1, tr A3

1, tr A2, tr A2
2, tr A3

2, tr A1A2, tr A2
1A2,

tr A1A
2
2, tr MA1, tr MA2, tr MA2

1, tr MA2
2, tr MA1A2).

(B.8)

Orthotropic Medium

An orthotropic body exhibits reflectional symmetries with respect to three mutually
orthogonal planes, the planes of orthotropic symmetry. These symmetry properties
are described by three structure tensors (but only two of them are independent), given
by

Mr = er ⊗ er (r = 1, 2, 3), (B.9)

where er are the unit vectors along the axes of orthotropic symmetry. The general
frame-indifferent constitutive representation for an orthotropic medium includes 12
tensor generators, and is defined by

T = α1M1 + α2M2 + α3M3 + α4(M1A1 + A1M1) +
+ α5(M2A1 + A1M2) + α6(M3A1 + A1M3) +
+ α7(M1A2 + A2M1) + α8(M2A2 + A2M2) +
+ α9(M3A2 + A2M3) + α10A

2
1 + α11A

2
2 + α12(A1A2 + A2A1),

(B.10)

where the response coefficients αk (k = 1, . . . , 12) are functions of 19 invariants:
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αk = αk( tr M1A1, tr M2A1, tr M3A1, tr M1A2, tr M2A2, tr M3A2,

tr M1A
2
1, tr M2A

2
1, tr M3A

2
1, tr M1A

2
2, tr M2A

2
2, tr M3A

2
2,

tr M1A1A2, tr M2A1A2, tr M3A1A2,

tr A2
1A2, tr A1A

2
2, tr A3

1, tr A3
2).

(B.11)
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